Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Bone Res ; 12(1): 26, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38705887

ABSTRACT

During cell differentiation, growth, and development, cells can respond to extracellular stimuli through communication channels. Pannexin (Panx) family and connexin (Cx) family are two important types of channel-forming proteins. Panx family contains three members (Panx1-3) and is expressed widely in bone, cartilage and muscle. Although there is no sequence homology between Panx family and Cx family, they exhibit similar configurations and functions. Similar to Cxs, the key roles of Panxs in the maintenance of physiological functions of the musculoskeletal system and disease progression were gradually revealed later. Here, we seek to elucidate the structure of Panxs and their roles in regulating processes such as osteogenesis, chondrogenesis, and muscle growth. We also focus on the comparison between Cx and Panx. As a new key target, Panxs expression imbalance and dysfunction in muscle and the therapeutic potentials of Panxs in joint diseases are also discussed.


Subject(s)
Connexins , Disease Progression , Musculoskeletal System , Humans , Connexins/metabolism , Connexins/genetics , Musculoskeletal System/metabolism , Musculoskeletal System/pathology , Musculoskeletal System/physiopathology , Animals , Osteogenesis/physiology
2.
Exp Dermatol ; 33(1): e14812, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37086043

ABSTRACT

Rosacea is a complex chronic inflammatory skin disorder with high morbidity. Pyroptosis is known as a regulated inflammatory cell death. While its association with immune response to various inflammatory disorders is well established, little is known about its functional relevance of rosacea. So, we aimed to explore and enrich the pathogenesis involved in pyroptosis-related rosacea aggravations. In this study, we evaluated the pyroptosis-related patterns of rosacea by consensus clustering analysis of 45 ferroptosis-related genes (FRGs), with multiple immune cell infiltration analysis to identify the pyroptosis-mediated immune response in rosacea using GSE65914 dataset. The co-co-work between PRGs and WGCNA-revealed hub genes has established using PPI network. FRG signature was highlighted in rosacea using multi-transcriptomic and experiment analysis. Based on this, three distinct pyroptosis-related rosacea patterns (non/moderate/high) were identified, and the notably enriched pathways have revealed through GO, KEGG and GSEA analysis, especially immune-related pathways. Also, the XCell/MCPcount/ssGSEA/Cibersort underlined the immune-related signalling (NK cells, Monocyte, Neutrophil, Th2 cells, Macrophage), whose hub genes were identified through WGCNA (NOD2, MYD88, STAT1, HSPA4, CXCL8). Finally, we established a pyroptosis-immune co-work during the rosacea aggravations. FRGs may affect the progression of rosacea by regulating the immune cell infiltrations. In all, pyroptosis with its mediated immune cell infiltration is a critical factor during the development of rosacea.


Subject(s)
Pyroptosis , Rosacea , Humans , Pyroptosis/genetics , Rosacea/genetics , Skin , Adaptor Proteins, Signal Transducing , Gene Expression Profiling
3.
Comput Struct Biotechnol J ; 23: 64-76, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38125299

ABSTRACT

Background: Accumulating evidence suggests that regulated cell death, such as pyroptosis, apoptosis, and necroptosis, is deeply involved in the pathogenesis of psoriasis. As a newly recognized form of systematic cell death, PANoptosis is involved in a variety of inflammatory disorders through amplifying inflammatory and immune cascades, but its role in psoriasis remains elusive. Objectives: To reveal the role of PANoptosis in psoriasis for a potential therapeutic strategy. Methods: Multitranscriptomic analysis and experimental validation were used to identify PANoptosis signaling in psoriasis. RNA-seq and scRNA-seq analyses were performed to establish a PANoptosis-mediated immune response in psoriasis, which revealed hub genes through WGCNA and predicted disulfiram as a potential drug. The effect and mechanism of disulfiram were verified in imiquimod (IMQ)-induced psoriasis. Results: Here, we found a highlighted PANoptosis signature in psoriasis patients through multitranscriptomic analysis and experimental validation. Based on this, two distinct PANoptosis patterns (non/high) were identified, which were the options for clinical classification. The high-PANoptosis-related group had a higher response rate to immune cell infiltration (such as M1 macrophages and keratinocytes). Subsequently, WGCNA showed the hub genes (e.g., S100A12, CYCS, NOD2, STAT1, HSPA4, AIM2, MAPK7), which were significantly associated with clinical phenotype, PANoptosis signature, and identified immune response in psoriasis. Finally, we explored disulfiram (DSF) as a candidate drug for psoriasis through network pharmacology, which ameliorated IMQ-mediated psoriatic symptoms through antipyroptosis-mediated inflammation and enhanced apoptotic progression. By analyzing the specific ligand-receptor interaction pairs within and between cell lineages, we speculated that DSF might exert its effects by targeting keratinocytes directly or targeting M1 macrophages to downregulate the proliferation of keratinocytes. Conclusions: PANoptosis with its mediated immune cell infiltration provides a roadmap for research on the pathogenesis and therapeutic strategies of psoriasis.

4.
Article in English | MEDLINE | ID: mdl-37817652

ABSTRACT

Type 1 Diabetes (T1D) is characterized by hyperglycemia, and caused by a lack of insulin secretion. At present there is no cure for T1D and patients are dependent on exogenous insulin for lifelong, which seriously affects their lives. Mesenchymal stem cells (MSCs) can be differentiated to ß cell-like cells to rescue the secretion of insulin and reconstruct immunotolerance to preserve the function of islet ß cells. Due to the higher proportion of children and adolescents in T1D patients, the efficacy and safety issue of the application of MSC's transplant in T1D was primarily demonstrated and identified by human clinical trials in this review. Then we clarified the mechanism of MSCs to relieve the symptom of T1D and found out that UC-MSCs have no obvious advantage over the other types of MSCs, the autologous MSCs from BM or menstrual blood with less expanded ex vivo could be the better choice for clinical application to treat with T1D through documentary analysis. Finally, we summarized the advances of MSCs with different interventions such as genetic engineering in the treatment of T1D, and demonstrated the advantages and shortage of MSCs intervened by different treatments in the transplantation, which may enhance the clinical efficacy and overcome the shortcomings in the application of MSCs to T1D in future.

5.
Biomed Pharmacother ; 165: 115043, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37364478

ABSTRACT

HYBID is a new hyaluronan-degrading enzyme and exists in various cells of the human body. Recently, HYBID was found to over-express in the osteoarthritic chondrocytes and fibroblast-like synoviocytes. According to these researches, high level of HYBID is significantly correlated with cartilage degeneration in joints and hyaluronic acid degradation in synovial fluid. In addition, HYBID can affect inflammatory cytokine secretion, cartilage and synovium fibrosis, synovial hyperplasia via multiple signaling pathways, thereby exacerbating osteoarthritis. Based on the existing research of HYBID in osteoarthritis, HYBID can break the metabolic balance of HA in joints through the degradation ability independent of HYALs/CD44 system and furthermore affect cartilage structure and mechanotransduction of chondrocytes. In particular, in addition to HYBID itself being able to trigger some signaling pathways, we believe that low-molecular-weight hyaluronan produced by excess degradation can also stimulate some disease-promoting signaling pathways by replacing high-molecular-weight hyaluronan in joints. The specific role of HYBID in osteoarthritis is gradually revealed, and the discovery of HYBID raises the new way to treat osteoarthritis. In this review, the expression and basic functions of HYBID in joints were summarized, and reveal potential role of HYBID as a key target in treatment for osteoarthritis.


Subject(s)
Hyaluronic Acid , Osteoarthritis , Humans , Hyaluronic Acid/metabolism , Mechanotransduction, Cellular , Osteoarthritis/drug therapy , Hyaluronoglucosaminidase/metabolism , Disease Progression
6.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(2): 228-232, 2023 Feb 15.
Article in Chinese | MEDLINE | ID: mdl-36796821

ABSTRACT

Objective: To review the research progress of intraspinal solitary fibrous tumor (SFT). Methods: The domestic and foreign researches on intraspinal SFT were extensively reviewed and analyzed from four aspects, including disease origin, pathological and radiological characteristics, diagnosis and differential diagnosis, and treatment and prognosis. Results: SFT is an interstitial fibroblastic tumor with a low probability of occurrence in the central nervous system, especially in the spinal canal. In 2016, the World Health Organization (WHO) used the joint diagnostic term "SFT/hemangiopericytoma" according to the pathological characteristics of mesenchymal fibroblasts, which can be divided into three levels according to specific characteristics. The diagnosis process of intraspinal SFT is complex and tedious. It has relatively variable imaging manifestations and specific pathological changes of NAB2-STAT6 fusion gene, which often requires differential diagnosis with neurinoma, meningioma, etc. The treatment of SFT is mainly resection, which can be assisted by radiotherapy to improve the prognosis. Conclusion: Intraspinal SFT is a rare disease. Surgery is still the main treatment. It is recommended to combine preoperative or postoperative radiotherapy. The efficacy of chemotherapy is still unclear. In the future, more studies are expected to establish a systematic diagnosis and treatment strategy for intraspinal SFT.


Subject(s)
Hemangiopericytoma , Solitary Fibrous Tumors , Humans , Solitary Fibrous Tumors/therapy , Solitary Fibrous Tumors/diagnosis , Solitary Fibrous Tumors/genetics , Hemangiopericytoma/diagnosis , Hemangiopericytoma/genetics , Hemangiopericytoma/pathology , Prognosis , Diagnosis, Differential
7.
Aging Dis ; 13(6): 1715-1732, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36465186

ABSTRACT

Connexin43, which is the most highly expressed connexin subtype in the musculoskeletal system, exists in a variety of bone cells, synovial tissue, and cartilage tissue. Connexin43 has been suggested to be a key regulator of bone homeostasis. Studies have shown aberrant Connexin43 expression in musculoskeletal disorders, such as osteoporosis, osteoarthritis, and rheumatoid arthritis. During cellular activities, Connexin43 can participate in the formation of functionally specific gap junctions and hemichannels and can exert independent cellular regulatory and signaling functions through special C-termini. The critical role of Connexin43 in physiological development and disease progression has been gradually revealed. In this article, the function of Connexin43 in musculoskeletal tissues is summarized, revealing the potential role of Connexin43 as a key target in the treatment of related bone and muscle disorders and the need for further discovery.

8.
Front Surg ; 9: 1025557, 2022.
Article in English | MEDLINE | ID: mdl-36338621

ABSTRACT

Background: Biochemical processes involved in complex skin diseases (skin cancers, psoriasis, and wound) can be identified by combining proteomics analysis and bioinformatics tools, which gain a next-level insight into their pathogenesis, diagnosis, and therapeutic targets. Methods: Articles were identified through a search of PubMed, Embase, and MEDLINE references dated to May 2022, to perform system data mining, and a search of the Web of Science (WoS) Core Collection was utilized to conduct a visual bibliometric analysis. Results: An increased trend line revealed that the number of publications related to proteomics utilized in skin diseases has sharply increased recent years, reaching a peak in 2021. The hottest fields focused on are skin cancer (melanoma), inflammation skin disorder (psoriasis), and skin wounds. After deduplication and title, abstract, and full-text screening, a total of 486 of the 7,822 outcomes met the inclusion/exclusion criteria for detailed data mining in the field of skin disease tooling with proteomics, with regard to skin cancer. According to the data, cell death, metabolism, skeleton, immune, and inflammation enrichment pathways are likely the major part and hotspots of proteomic analysis found in skin diseases. Also, the focuses of proteomics in skin disease are from superficial presumption to depth mechanism exploration within more comprehensive validation, from basic study to a combination or guideline for clinical applications. Furthermore, we chose skin cancer as a typical example, compared with other skin disorders. In addition to finding key pathogenic proteins and differences between diseases, proteomic analysis is also used for therapeutic evaluation or can further obtain in-depth mechanisms in the field of skin diseases. Conclusion: Proteomics has been regarded as an irreplaceable technology in the study of pathophysiological mechanism and/or therapeutic targets of skin diseases, which could provide candidate key proteins for the insight into the biological information after gene transcription. However, depth pathogenesis and potential clinical applications need further studies with stronger evidence within a wider range of skin diseases.

9.
Heliyon ; 8(10): e10874, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36276718

ABSTRACT

Background: Rosacea is a common and complex chronic inflammatory skin disorder, the pathophysiology and etiology of which remain unclear. Recently, significant new insights into rosacea pathogenesis have enriched and reshaped our understanding of the disorder. A systematic analysis based on current studies will facilitate further research on rosacea pathogenesis. Objective: To establish an international core outcome and knowledge system of rosacea pathogenesis and develop a challenge, trend and hot spot analysis set for research and clinical studies on rosacea using bibliometric analysis and data mining. Methods: A search of the WoS, and PubMed, MEDLINE, Embase and Cochrane collaboration databases was conducted to perform visual bibliometric and data analysis. Results: A total of 2,654 studies were used for the visualization and 302 of the 6,769 outcomes for data analysis. It reveals an increased trend line in the field of rosacea, in which its fast-growing pathogenesis attracted attention closely related to risk, comorbidity and therapeutic strategies. The rosacea pathogenesis has undergone the great development on immunology, microorganisms, genes, skin barriers and neurogenetics. The major of studies have focused on immune and microorganisms. And keyword visualization and data analyses demonstrated the cross-talk between cells or each aspect of pathogenesis, such as gene-gene or gene-environment interactions, and neurological mechanisms associated with the rosacea phenotype warrant further research. Limitations: Inherent limitations of bibliometrics; and reliance on research and retrospective studies. Conclusions: The understanding of rosacea's pathogenesis has been significantly enhanced with the improved technology and multidisciplinary integration, but high-quality, strong evidence in favor of genomic and neurogenic requires further research combined with a better understanding of risks and comorbidities to guide clinical practice.

10.
Article in English | MEDLINE | ID: mdl-36012058

ABSTRACT

In China, joint activities for the elderly and children in integrated welfare facilities lack systematic decision procedures. By learning from the "leisure constraint" theory, the study puts forward six influencing indicators of motivation and constraint in the aspects of preliminary coordination, activity space and effect. By using semi-structured interviews and questionnaire surveys analyzed by deviation value computation, the study analyzes the evaluation value of influencing factors in the decision procedure of potential activity cases, where administrators and nurses act as two decision makers. Further, it discusses the decision-making mechanism based on the "motivation-constraint" interaction model. Firstly, it analyzes the dominant forces in the decision procedure, which are "motivation oriented", "negotiation oriented" and "constraint oriented". Secondly, it reveals that administrators and nurses as two decision makers tend to give positive motivation evaluations and deliberative constraints evaluations, respectively. Additionally, it analyzes the decision procedures of activities with distinct feasibility differentiation. Thirdly, it positions the levels of occurrence potential as "should occur", "occurred but should be improved", "potentially could occur" and "hard to occur". Eventually, it analyzes the requirements and potential for joint activities under different service modules, which provides a theoretical foundation for the systematic planning and development of the joint activities.


Subject(s)
Administrative Personnel , Motivation , Aged , Child , China , Humans , Surveys and Questionnaires
11.
Front Endocrinol (Lausanne) ; 13: 859638, 2022.
Article in English | MEDLINE | ID: mdl-35370989

ABSTRACT

Type 1 diabetes mellitus (T1DM) is an autoimmune disease that attacks pancreatic ß-cells, leading to the destruction of insulitis-related islet ß-cells. Islet ß-cell transplantation has been proven as a curative measure in T1DM. However, a logarithmic increase in the global population with diabetes, limited donor supply, and the need for lifelong immunosuppression restrict the widespread use of ß-cell transplantation. Numerous therapeutic approaches have been taken to search for substitutes of ß-cells, among which stem cell transplantation is one of the most promising alternatives. Stem cells have demonstrated the potential efficacy to treat T1DM by reconstitution of immunotolerance and preservation of islet ß-cell function in recent research. cGMP-grade stem cell products have been used in human clinical trials, showing that stem cell transplantation has beneficial effects on T1DM, with no obvious adverse reactions. To better achieve remission of T1DM by stem cell transplantation, in this work, we explain the progression of stem cell transplantation such as mesenchymal stem cells (MSCs), human embryonic stem cells (hESCs), and bone marrow hematopoietic stem cells (BM-HSCs) to restore the immunotolerance and preserve the islet ß-cell function of T1DM in recent years. This review article provides evidence of the clinical applications of stem cell therapy in the treatment of T1DM.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Islets of Langerhans , Diabetes Mellitus, Type 1/surgery , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Stem Cell Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...