Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(31): 12543-12549, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39118619

ABSTRACT

Nature seems to favor the formation of closed anion-templated silver clusters. How precisely to create non-closed sliver clusters remains an interesting challenge. In this work, we propose that the use of transition-metal-coordination-cluster substituted polyoxometalates (TMCC-substituted POMs) as templates is an effective synthetic strategy for creating the non-closed silver clusters, as demonstrated by the obtainment of four types of rare non-closed silver cluster species of Ag38-TM (TM = Co, Ni or Zn), Ag37-Zn, {Ag37-Zn}∞ and Ag36-TM (TM = Co, Ni). The idea of the strategy is to employ the TMCC-substituted POMs containing cluster modules with different bond interactions with Ag+ ions as templates to guide the formation of the non-closed silver clusters. For example, TMCC-substituted POM clusters are used as templates in this work, which contain POM modules that can coordinate with the Ag+ ions and TMCC moieties that are difficult to coordinate with the Ag+ ions, leading to the Ag+ ions being unable to form closed clusters around TMCC-substituted POM templates. The work demonstrates a promising approach to developing intriguing and unexplored non-closed silver clusters.

2.
Chem Commun (Camb) ; 60(67): 8888-8891, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39086271

ABSTRACT

A rare all-inorganic high-nuclearity mixed-valent {Mn11} cluster embedded polyoxoniobate, K25H43{(Te4Nb9O33)3(Nb6O19)5(TeVINb5O14)[(TeIVO3)2(MnII7MnIII4O19)]}·97H2O (1), has been synthesized by a one-pot reaction. Compound 1 contains the largest manganese cluster {Mn11} core among polyoxoniobates reported to date. {Mn11} consists of three quasi-cubane {Mn3O4} units and is simultaneously encapsulated by lacunary α-Keggin {Te4Nb9O36} and Lindqvist {Nb6O19} units. Compound 1 exhibits significant magnetic anisotropy and excellent water solubility and stability. The findings suggest a new, all-inorganic polynulear Mn-based structural paradigm for aqueous solution chemistry and magnetic materials.

3.
Inorg Chem ; 63(31): 14308-14312, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39041605

ABSTRACT

Here, a case of bilayer heterojunction Pd-containing polyoxotungstate (POW), connecting a Te3Pd3 ring and an Anderson-like TeW6 cluster, has been synthesized. The Anderson-like cluster is the first example in POW. The coordination of Pd in the ring with the S atom on the sulfo group breaks the traditional coordination configuration of Pd and O in polyoxometalates (POMs), enriching the structural types of Pd-containing POMs. In addition, the hybrid bilayer heterojunction structure at the molecular level not only provides high thermal stability but also results in spatial arrangement anisotropy, leading to up to five times the anisotropic proton conductivity.

4.
Inorg Chem ; 63(26): 12240-12247, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946338

ABSTRACT

An unusual crystalline porous framework constructed from four types of cages, including all-inorganic Keggin-type polyoxometalate (POM) cages [H3W12O40]5-, organic hexamethylenetetramine (Hmt) cages, nanosized silver-Hmt coordination cages, and giant POM-silver-Hmt cages, was hydrothermally synthesized and structurally characterized. The framework features a highly symmetrical structure with one-dimensional nanoscale channels and holds good thermal/solvent stability, which endow it with proton conduction properties and heterogeneous catalytic activity for pyrazole. This paper not only contributes to broadening the structural diversity of cage-based crystalline porous framework materials but also sheds new light on the design of new functional framework materials.

5.
Nanoscale ; 16(26): 12420-12423, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38888289

ABSTRACT

Four different structural compositions of organophosphate, 3d transition metal, 4f lanthanide and polyoxoniobate (PONb) are unified in a system for the first time to form a new type of organophosphate 3d-4f heterometallic inorganic-organic hybrid PONb nanowire. Interesting magnetic anisotropy and slow magnetic relaxation are found in the PONb nanowire.

6.
Inorg Chem ; 63(20): 9204-9211, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38701353

ABSTRACT

In this work, a novel organodiphosphate-containing inorganic-organic hybrid polyoxoniobate (PONb) ring {(PO3CH2CH2PO3H)4Nb8O16}4- (Nb8P8) has been achieved by a one-pot hydrothermal method. The ring is constructed from a tetragonal {Nb8O36} motif and four {PO3CH2CH2PO3H} ligands. Interestingly, Nb8P8 can be joined together via K-H2O clusters {K2(H2O)4(OH)2} to form one-dimensional chains {[K2(H2O)4(OH)2]Nb8P8}n and further linked by {Cu(en)2}2+ (en = ethylenediamine) complexes, resulting in a three-dimensional supramolecular framework {[Cu(en)2]2[K2(H2O)4(OH)2]Nb8P8}·3en·H2O (1). 1 exhibits good chemical and thermal stability and has a high water vapor adsorption capacity of ≤224 cm3 g-1 (22.71 mol·mol-1) at 298 K, outperforming most of the known polyoxometalate-based materials. Impedance measurements prove that 1 can transfer protons with moderate conductivity. This study not only contributes to the structural diversity of organodiphosphate-containing PONbs and PONb rings but also provides a reference for the development of PONb-based materials with unique performance.

7.
Angew Chem Int Ed Engl ; 63(29): e202404314, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38712987

ABSTRACT

Atomically precise low-nuclearity (n<10) silver nanoclusters (AgNCs) have garnered significant interest due to their size-dependent optical properties and diverse applications. However, their synthesis has remained challenging, primarily due to their inherent instability. The present study introduces a new feasible approach for clustering silver ions utilizing highly negative and redox-inert polyoxoniobates (PONbs) as all-inorganic ligands. This strategy not only enables the creation of novel Ag-PONb composite nanoclusters but also facilitates the synthesis of stable low-nuclearity AgNCs. Using this method, we have successfully synthesized a small octanuclear rhombic [Ag8]6+ AgNC stabilized by six highly negative [LiNb27O75]14- polyoxoanions. This marks the first PONb-protected superatomic AgNC, designated as {Ag8@(LiNb27O75)6} (Ag8@Nb162), with an aesthetically spherical core-shell structure. The crystalline Ag8@Nb162 is stable under ambient conditions, What's more, it is water-soluble and able to maintain its molecular cluster structure intact in water. Further, the stable small [Ag8]6+ AgNC has interesting temperature- and pH-dependent reversible fluorescence response, based on which a multiple optical encryption mode for anti-counterfeit technology was demonstrated. This work offers a promising avenue for the synthesis of fascinating and stable PONb-protected AgNCs and sheds light on the development of new-type optical functional materials.

8.
Dalton Trans ; 53(17): 7424-7429, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38591126

ABSTRACT

A 3D tellurium-substituted heteropolyoxoniobate framework H5K3Na[Cu(en)2]2[Cu(en)0.75(H2O)2.5]{[(Te2Nb19O58)(µ3-OH)2]}·24H2O (1, en = ethylenediamine) with a 6-connected pcu topology is built from heart-shaped {Te2Nb19O60} clusters and copper complexes. The {Te2Nb19O60} cluster represents the new tellurniobate structure type with a 19-nuclearity Nb cluster. It consists of two new monovacant Lindqvist {Nb5O19} clusters, one boat-shaped {Nb9O32} cluster and two TeO32- anions. The {Te2Nb19O60} polyanions are interlinked by [Cu(en)2]2+ complexes into a 2D (4, 4) grid-like layer containing rhombic sheets. The Cu2+ supports the adjacent layers through Te-O-Cu-O-Te- bonds to form a three-dimensional heteropolyoxoniobate framework with 1D channels. This compound exhibits good chemical and solvent stability and proton conductivity, with a conductivity of 7.9 × 10-3 S cm-1 at 85 °C under 98% RH.

9.
Dalton Trans ; 53(14): 6162-6167, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38488144

ABSTRACT

A series of proof-of-concept models of polyoxomolybdates with different protonated disubstituted aniline counterions and the same ß-Mo8O26 polyanion were synthesized to study the mechanism governing the formation of the intermolecular charge transfer (inter-CT) band.

10.
Small ; 20(32): e2401044, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38516941

ABSTRACT

Atomically precise metal clusters serve as a unique model for unraveling the intricate mechanism of the catalytic reaction and exploring the complex relationship between structure and activity. Herein, three series of water-soluble heterometallic clusters LnCu6, abbreviated as LnCu6-AC (Ln = La, Nd, Gd, Er, Yb; HAC = acetic acid), LnCu6-IM (Ln = La and Nd; IM = Imidazole), and LnCu6-IDA (Ln = Nd; H2IDA = Iminodiacetic acid) are presented, each featuring a uniform metallic core stabilized by distinct protected ligands. Crystal structure analysis reveals a triangular prism topology formed by six Cu2+ ions around one Ln3+ ion in LnCu6, with variations in Cu···Cu distances attributed to different ligands. Electrocatalytic oxygen evolution reaction (OER) shows that these different LnCu6 clusters exhibit different OER activities with remarkable turnover frequency of 135 s-1 for NdCu6-AC, 79 s-1 for NdCu6-IM and 32 s-1 for NdCu6-IDA. Structural analysis and Density Functional Theory (DFT) calculations underscore the correlation between shorter Cu···Cu distances and improves OER catalytic activity, emphasizing the pivotal role of active-site distance in regulating electrocatalytic OER activities. These results provide valuable insights into the OER mechanism and contribute to the design of efficient homogeneous OER electrocatalysts.

11.
Dalton Trans ; 53(11): 5258-5265, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38407346

ABSTRACT

An inorganic hexalanthanide-oxo-cluster-encapsulated antimotungstate, K2Na3H43[Nd6(OH)6(H2O)6(B-α-SbW9O33)4]2·67H2O (1), has been successfully synthesized by a facile one-step hydrothermal reaction method. The tetrahedron-shaped two-shell {Nd6(OH)6(H2O)6(B-α-SbW9O33)4}(1a) polyanion is composed of a novel pure lanthanide-oxo {Nd6(µ3-OH)6(H2O)6} octahedron and {(B-α-SbW9O33)4} tetrahedron. After being effectively loaded onto a glassy carbon electrode (GCE) by electrostatic adsorption using polydiallyldimethyl ammonium chloride (PDDA)-functionalized multi-walled carbon nanotubes (MWCNTs), compound 1 exhibits electrochemical activity for the reduction of bromate ions with good selectivity, a high sensitivity of 186 µA mM-1 and a detection limit that has reached 1.9 µM. To the best of our knowledge, this is the first example of an amperometric bromate sensor based on Ln-containing antimotungstates, which will provide new materials for electrochemical sensors.

12.
Dalton Trans ; 53(5): 2318-2323, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38205611

ABSTRACT

Three new group IIIA metal phosphate-oxalate (MPO) compounds, namely [(CH3)2NH2]2[M2(HPO4)2(H2PO4)2(C2O4)] (M = Al (1), Ga (2)) and [(CH3)2NH2]2[In2(HPO4)2(H2PO4)2(C2O4)]·H2O (3), have been synthesized. Their crystal structures feature an anionic layer with the sql topology net. In particular, 1 displays a proton conductivity (σ) of 9.09 × 10-3 S cm-1 at 85 °C and under 98% relative humidity, which is the highest among MPOs. This study not only endows the main group metal-based MPO family with new members, but also contributes to further understanding of the structure-directing roles of amines and provides a feasible idea for improving the proton conductivity of MPOs.

13.
Inorg Chem ; 63(2): 1388-1394, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38166363

ABSTRACT

By variation of the amount of GeO2, two organic-inorganic hybrid germanoniobate frameworks with 6-connected pcu and 10-connected bct topologies were constructed from peanut-shaped {α-Ge12Nb38} and {ß-Ge12Nb38} clusters, respectively. The {α-Ge12Nb38} and {ß-Ge12Nb38} clusters contain the most Ge centers of germanoniobates reported so far. The compounds exhibit proton conduction properties with a conductivity of 3.04 × 10-4 S·cm-3 for 1 and 1.62 × 10-4 S·cm-3 for 2 at 85 °C and 98% RH. The water vapor adsorption capacities for 1 and 2 are 5.86 and 4.40 mmol·g-1, respectively.

14.
Angew Chem Int Ed Engl ; 62(46): e202312706, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37793987

ABSTRACT

Inspired by the metal-oxo cluster structural feature and charge separation behaviour of the oxygen evolving center (OEC) in photosystem II (PS-II) under photoirradiation, a new crystalline photochromic polyoxomolybdate, MV2 [ß-Mo8 O26 ] (1, MV=methyl viologen cation), is designed as a biomimetic oxygen evolution reaction (OER) catalyst in neutral electrolytes. After photoinduced electron transfer (PIET) with colour change from colourless to grey, it remains in an ultra-stable charge-separated state over a year under ambient conditions. The observed overpotential at 10 mA ⋅ cm-2 and Tafel slope decrease by 49 mV and 62.8 mV ⋅ dec-1 after coloration, respectively. The outstanding OER performance of the coloured state in neutral electrolytes even outperforms the commercial RuO2 benchmark. Experimental and theoretical studies show that oxygen holes within polyanions after irradiation serve as sites for enhancing direct O-O coupling, thus effectively promoting OER. This is the first successful application of electron-transfer photochromism to realize OER activity gain.

15.
Inorg Chem ; 62(26): 10044-10048, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37338532

ABSTRACT

A unique heteropolyoxotantalate (hetero-POTa) cluster [P2O7Ta5O14]7- (P2Ta5) was first developed using pyrophosphate as a key to open the ultrastable skeleton of the classical Lindqvist-type [Ta6O19]8- precursor. The P2Ta5 cluster can serve as a general and flexible secondary building unit to create a family of brand-new multidimensional POTa architectures. This work not only promotes the limited structural diversity of hetero-POTa but also provides a practical strategy for new extended POTa architectures.

16.
Inorg Chem ; 62(27): 10675-10683, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37381902

ABSTRACT

A 3D Co(III)-complex hybrid polyoxoniobate framework Na10(H2O)36[Co2(phen)2(4,4'-bipy)(Nb6O19)2]·19H2O (1) has been constructed from [Co2(phen)2(4,4'-bipy)(Nb6O19)2]10- dimer units and 2D inorganic Na-O cluster layers. The Co(III) centers are coordinated with {Nb6O19}, 4,4'-bipy and phen simultaneously. The [Co2(phen)2(4,4'-bipy)(Nb6O19)2]10- fragments link the Na-O cluster layers to generate a 3D metal complex-modified hybrid polyoxoniobate framework with π-π interactions between phenanthroline rings. Compound 1 shows reversible thermochromic behavior resulting from electron transfer from {Nb6O19} to 4,4'-bipy and subsequent formation of radical products, which is first observed in polyoxoniobates. Furthermore, the compound exhibits stable nonvolatile storage behavior and rewritable resistive switching with a low switching voltage (1.12 V) and high current on/off ratio (1.18 × 103) along with stable cyclic performance during stability test for 200 cycles. Charge-transfer mechanism has been studied by analyzing the relationship between current and voltage in the process of resistance switching.

17.
Angew Chem Int Ed Engl ; 62(26): e202305260, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37118979

ABSTRACT

Only rarely have polyoxometalates been found to form core-shell nanoclusters. Here, we succeeded in isolating a series of rare giant and all-inorganic core-shell cobalt polyoxoniobates (Co-PONbs) with diverse shapes, nuclearities and original topologies, including 50-nuclearity {Co12 Nb38 O132 }, 54-nuclearity {Co20 Nb34 O128 }, 62-nuclearity {Co26 Nb36 O140 } and 87-nuclearity {Co33 Nb54 O188 }. They are the largest Co-PONbs and also the polyoxometalates containing the greatest number of Co ions and the largest cobalt clusters known thus far. These molecular Co-PONbs have intriguing and atomically precise core-shell architectures comprising unique cobalt oxide cores and niobate oxide shells. In particular, the encapsulated cobalt oxide cores with different nuclearities have identical compositions, structures and mixed-valence Co3+ /Co2+ states as the different sized Co-O moieties of the bulk cubic-spinel Co3 O4 , suggesting that they can serve as various molecular models of the cubic-spinel Co3 O4 . The successful construction of the series of the Co-PONbs reveals a feasible and versatile synthetic method for making rare core-shell heterometallic PONbs. Further, these new-type core-shell bimetal species are promising cluster molecular catalysts for visible-light-driven CO2 reduction.


Subject(s)
Carbon Dioxide , Oxides , Oxides/chemistry , Cobalt/chemistry
18.
J Colloid Interface Sci ; 642: 408-420, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37023513

ABSTRACT

The study about simultaneously enhancing the resistive switching level and ambient-air-stability of perovskite-based memorizers will promote its commercialization. Here, a new 3D perovskite (TAZ-H)PbBr3 (TAZ-H+ = protonated thiazole) has been fabricated as FTO/(TAZ-H)PbBr3/Ag device, which only exhibits binary memory performance with the high tolerant temperature of 170 °C. After encapsulating by polyvinylpyrrolidone (PVP), the (TAZ-H)PbBr3@PVP composite-based device can demonstrate ternary resistive switching behavior with considerable ON2/ON1/OFF ratio (105.9: 103.9:1) and high ternary yield (68 %). Specially, this device presents good ambient-air stability at RH 80 % and thermal tolerance of 100 °C. The binary resistive switching mechanism can be ascribed to the halogen ion migration induced by bromine defects in the (PbBr3)nn- framework. But the ternary resistive switching phenomenon in the (TAZ-H)PbBr3@PVP-based device could be depicted as the carrier transport from filled traps of PVP to (PbBr3)nn- framework (ON1 state) and then carriers flowing in the re-arranged (TAZ-H)nn+ chain in 3D channels (ON2 state). The PVP treatment can not only modify the grain boundary defects, but also facilitate the transport of injected carriers to the perovskite films via Pb-O coordinated bonds and inhibition of order-disorder transformation. This facial strategy for implementing ternary perovskite-based memorizers with good ambient-air-stability is quite meaningful for high-density memory in harsh environments.

19.
Angew Chem Int Ed Engl ; 62(26): e202302111, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37088713

ABSTRACT

Compounds with redox activities have appealing applications in catalytic, electronic and magnetic properties, but the redox inert of polyoxoniobates (PONbs) significantly limits their applications for a long time. In this work, we are able to integrate organophosphate and lanthanide cluster into PONb to create the first family of inorganic-organic hybrid organophosphate-Ln-PONb composite clusters. These novel species not only present the first family of redox active PONbs that can be reduced to form long-lived "heteropoly blues" under ambient conditions, but also a new photochromic system. More importantly, the analyses of the electronic configurations and photochromic properties for a series of designed proof-of-concept PONbs models allow us to discover a D-f-A electron transfer mechanism, that is, photoinduced electron is transferred from a photosensitive organophosphate electron donor (D) to the NbV electron acceptor (A) through the unoccupied 4 f-orbitals of Ln (f). This work paves the way for developing diverse PONb-based redox materials and expanding the possibility of the applications of PONbs in the redox chemistry.


Subject(s)
Electrons , Electron Transport , Oxidation-Reduction , Catalysis
20.
Chem Commun (Camb) ; 59(25): 3735-3738, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36896743

ABSTRACT

An oxalate-assisted strategy was first developed for creating new polyoxotantalates (POTas). With this strategy, two brand-new POTa supramolecular frameworks based on uncommon dimeric POTa secondary building units (SBUs) were constructed and characterized. Interestingly, the oxalate ligand can not only serve as a coordination ligand to form unique POTa SBUs but also act as a key hydrogen bond acceptor to construct supramolecular architectures. Besides, the architectures show outstanding proton conductivity. The strategy opens up new opportunities for developing new POTa materials.

SELECTION OF CITATIONS
SEARCH DETAIL