Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Autoimmun ; 143: 103160, 2024 02.
Article in English | MEDLINE | ID: mdl-38160538

ABSTRACT

Autoimmune uveitis (AU) is a severe disorder causing poor vision and blindness. However, the cellular dynamics and pathogenic mechanisms underlying retinal injury in uveitis remain unclear. In this study, single-cell RNA sequencing of the retina and cervical draining lymph nodes in experimental autoimmune uveitis mice was conducted to identify the cellular spatiotemporal dynamics and upregulation of the glycolysis-related gene LDHA. Suppression of LDHA can rescue the imbalance of T effector (Teff) cells/T regulator (Treg) cells under inflammation via downregulation of the glycolysis-PI3K signaling circuit and inhibition of the migration of CXCR4+ Teff cells towards retinal tissue. Furthermore, LDHA and CXCR4 are upregulated in the peripheral blood mononuclear cells of Vogt-Koyanagi-Harada patients. The LDHA inhibitor suppresses CD4+ T cell proliferation in humans. Therefore, our data indicate that the autoimmune environment of uveitis regulates Teff cell accumulation in the retina via glycolysis-associated LDHA. Modulation of this target may provide a novel therapeutic strategy for treating AU.


Subject(s)
Autoimmune Diseases , Uveitis , Animals , Humans , Mice , Leukocytes, Mononuclear , Phosphatidylinositol 3-Kinases , Retina , T-Lymphocytes, Regulatory
2.
Biomed Res Int ; 2023: 1179973, 2023.
Article in English | MEDLINE | ID: mdl-37415927

ABSTRACT

Current approaches are incurable for rheumatoid arthritis (RA). Regulatory T (Treg) cells and T helper cells (Th1 and Th17) are crucial in controlling the process of RA, which is characterized by inflammatory cell infiltration and bone destruction. Carnosol is an orthodiphenolic diterpene that has been extensively applied in traditional medicine for the treatment of multiple autoimmune and inflammatory diseases. Herein, we indicate that administration of carnosol dramatically alleviated the severity of collagen-induced arthritis (CIA) model with a decreased clinical score and inflammation reduction. Cellular mechanistically, carnosol inhibits the Th17 cell differentiation and maintains Treg cell suppressive function in vitro and in vivo. Meanwhile, it also restrains Treg cells from transdifferentiation into Th17 cells under inflammatory milieu. Furthermore, carnosol modulates the function of Th17 and Treg cells possibly via limiting IL-6R (CD126) expression. Collectively, our results suggest that carnosol can alleviate the severity of CIA via hiding Th17 cell differentiation and maintain the stability of Treg cells. Administration of carnosol can be applied as a potential therapy for patients with RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Animals , Humans , T-Lymphocytes, Regulatory , Th17 Cells , Arthritis, Rheumatoid/metabolism
3.
iScience ; 26(5): 106729, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37216113

ABSTRACT

Gingiva-derived mesenchymal stem cells (GMSCs) have shown astonishing efficacy in the treatment of various autoimmune diseases. However, the mechanisms underlying these immunosuppressive properties remain poorly understood. Here, we generated a lymph node single-cell transcriptomic atlas of GMSC-treated experimental autoimmune uveitis mice. GMSC exerted profound rescue effects on T cells, B cells, dendritic cells, and monocytes. GMSCs rescued the proportion of T helper 17 (Th17) cells and increased the proportion of regulatory T cells. In addition to globally altered transcriptional factors (Fosb and Jund), we observed cell type-dependent gene regulation (e.g., Il17a and Rac1 in Th17 cells), highlighting the GMSCs' cell type-dependent immunomodulatory capacity. GMSCs strongly influenced the phenotypes of Th17 cells, suppressing the formation of the highly inflammatory CCR6-CCR2+ phenotype and enhancing the production of interleukin (IL) -10 in the CCR6+CCR2+ phenotype. Integration of the glucocorticoid-treated transcriptome suggests a more specific immunosuppressive effect of GMSCs on lymphocytes.

4.
Adv Sci (Weinh) ; 10(6): e2206411, 2023 02.
Article in English | MEDLINE | ID: mdl-36567273

ABSTRACT

The aberrant regulation of PD-L1 in tumor cells remains poorly understood. Here, the authors systematically investigate the endosomal trafficking of plasma membrane PD-L1 in tumor cells. They show that plasma membrane PD-L1 is continuously internalized, and then trafficked from early endosomes to multivesicular bodies/late endosomes, recycling endosomes, lysosomes, and/or extracellular vesicles (EVs). This constitutive endocytic trafficking of PD-L1 is Rab5- and clathrin-dependent. Triazine compound 6J1 blocks the endosomal trafficking of PD-L1 and induces its accumulation in endocytic vesicles by activating Rab5. 6J1 also promotes exosomal PD-L1 secretion by activating Rab27. Together, these effects result in a decrease in the membrane level of PD-L1 in 6J1-treated tumor cells and enables tumor cells to be more susceptible to the tumor-killing activity of T cells in vitro. 6J1 also increases tumor-infiltrating cytotoxic T cells and promotes chemokines secretion in the tumor microenvironment. Rab27 knockdown abolishes 6J1-induced PD-L1 secretion in EVs and revokes the exhausted tumor-infiltrating T cells in tumors, thereby improving the anticancer efficacy of 6J1. Furthermore, a combination of 6J1 and an anti-PD-1 antibody significantly improves the anticancer immune response. Therefore, manipulating PD-L1 endosomal trafficking provides a promising means to promote an anticancer immune response in addition to the immune checkpoint-blocking antibody therapy.


Subject(s)
B7-H1 Antigen , Neoplasms , Humans , B7-H1 Antigen/metabolism , Endosomes/metabolism , Neoplasms/metabolism , T-Lymphocytes, Cytotoxic , Cell Membrane/metabolism , Tumor Microenvironment
5.
Front Bioeng Biotechnol ; 9: 630076, 2021.
Article in English | MEDLINE | ID: mdl-34235136

ABSTRACT

Cavernous nerve injury (CNI) is the main cause of erectile dysfunction (ED) following pelvic surgery. Our previous studies have demonstrated that transplantation of different sources of mesenchymal stem cells (MSCs) was able to alleviate ED induced by CNI in rat models. However, little is known about the therapeutic effects of human gingiva-derived MSCs (hGMSCs) in CNI ED rats. Herein, we injected the hGMSCs around the bilateral major pelvic ganglia (MPG) in a rat model of CNI and evaluated their efficacy. The results showed that treatment of hGMSCs could significantly promote the recovery of erectile function, enhance smooth muscle and endothelial content, restore neuronal nitric oxide synthase (nNOS) expression, and attenuate cell apoptosis in penile tissue. Moreover, penile fibrosis was significantly alleviated after hGMSC administration. In addition, potential mechanism exploration indicated that hGMSCs might exert its functions via skewed macrophage polarity from M1 toward M2 anti-inflammatory phenotype. In conclusion, this study found that transplantation of hGMSCs significantly improved CNI-related ED, which might provide new clues to evaluate their pre-clinical application.

6.
Adv Exp Med Biol ; 1278: 1-31, 2021.
Article in English | MEDLINE | ID: mdl-33523440

ABSTRACT

Regulatory T cells (Treg) play an indispensable role in maintaining the body's immune nonresponse to self-antigens and suppressing the body's unwarranted and potentially harmful immune responses. Their absence, reduction, dysfunction, transformation, and instability can lead to numerous autoimmune diseases. There are several distinct subtypes of the Treg cells, although they share certain biological characteristics and have unique phenotypes with different regulatory functions, as well as mechanistic abilities. In this book chapter, we introduce the latest advances in Treg cell subtypes pertaining to classification, phenotype, biological characteristics, and mechanisms. We also highlight the relationship between Treg cells and various diseases, including autoimmune, infectious, as well as tumors and organ transplants.


Subject(s)
Autoimmune Diseases , T-Lymphocytes, Regulatory , Autoantigens , Humans , Phenotype
7.
Am J Transl Res ; 12(8): 4757-4771, 2020.
Article in English | MEDLINE | ID: mdl-32913548

ABSTRACT

Ischemia reperfusion (I/R) injury, an inevitable event accompanying heart transplantation, is the primary factor leading to organ failure and graft rejection. In order to prevent I/R injury, we established murine heart transplantation model with I/R and cell culture system to determine whether ß-catenin is a mediate factor in preventing I/R injury in heart transplantation. After successfully established heterotopic heart transplantation mice model, the I/R injury was induced, and two dynamic temporal were studied during different I/R phases. With the increase of ischemia and reperfusion time, heart damage was more severe. In the initial study, we observed that ß-catenin was significantly decreased, while ROCK1 and PTEN increased during the perfusion phase from day 0 to day 1, and remain the same level until 3 days later. The similar pattern that ß-catenin was down-regulated while ROCK1 and PTEN were up-regulated was also observed in the dynamic temporal ischemia study. To further investigate the role of ß-catenin signaling in I/R injury in vitro, ß-catenin over-expressing plasmid was transfected into HL-1 cells, a cardiac cell line. We noted that ß-catenin over-expressing cardiomyocytes showed decreased ROCK1/PTEN expression both at mRNA and protein levels. In addition, cobalt dichloride (CoCl2) -induced oxidative stress model was further established to mimic cardiac I/R injury. We observed that CoCl2-induced activation of ROCK1/PTEN signaling pathway were attenuated by transient transfection of a ß-catenin over-expressing plasmid. Taken together, our results suggest that cardiac transplant induced IR injury is closely associated with the down-regulation of ß-catenin and up-regulation of ROCK1 and PTEN expression.

8.
EMBO Rep ; 21(9): e50308, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32644293

ABSTRACT

The transcription factor forkhead box P3 (FOXP3) is essential for the development of regulatory T cells (Tregs) and their function in immune homeostasis. Previous studies have shown that in natural Tregs (nTregs), FOXP3 can be regulated by polyubiquitination and deubiquitination. However, the molecular players active in this pathway, especially those modulating FOXP3 by deubiquitination in the distinct induced Treg (iTreg) lineage, remain unclear. Here, we identify the ubiquitin-specific peptidase 44 (USP44) as a novel deubiquitinase for FOXP3. USP44 interacts with and stabilizes FOXP3 by removing K48-linked ubiquitin modifications. Notably, TGF-ß induces USP44 expression during iTreg differentiation. USP44 co-operates with USP7 to stabilize and deubiquitinate FOXP3. Tregs genetically lacking USP44 are less effective than their wild-type counterparts, both in vitro and in multiple in vivo models of inflammatory disease and cancer. These findings suggest that USP44 plays an important role in the post-translational regulation of Treg function and is thus a potential therapeutic target for tolerance-breaking anti-cancer immunotherapy.


Subject(s)
Forkhead Transcription Factors , T-Lymphocytes, Regulatory , Forkhead Transcription Factors/genetics , Humans , Inflammation/genetics , Transforming Growth Factor beta , Ubiquitin Thiolesterase , Ubiquitin-Specific Peptidase 7
9.
Cell Death Dis ; 11(6): 409, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483121

ABSTRACT

Allergic airway inflammation is a major public health disease that affects up to 300 million people in the world. However, its management remains largely unsatisfactory. The dysfunction of pulmonary macrophages contributes greatly to the development of allergic airway inflammation. It has been reported that small extracellular vesicles derived from mesenchymal stromal cells (MSC-sEV) were able to display extensive therapeutic effects in some immune diseases. This study aimed to investigate the effects of MSC-sEV on allergic airway inflammation, and the role of macrophages involved in it. We successfully isolated MSC-sEV by using anion exchange chromatography, which were morphologically intact and positive for the specific EV markers. MSC-sEV significantly reduced infiltration of inflammatory cells and number of epithelial goblet cells in lung tissues of mice with allergic airway inflammation. Levels of inflammatory cells and cytokines in bronchoalveolar lavage fluid were also significantly decreased. Importantly, levels of monocytes-derived alveolar macrophages and M2 macrophages were significantly reduced by MSC-sEV. MSC-sEV were excreted through spleen and liver at 24 h post-administration in mice, and were able to be taken in by macrophages both in vivo and in vitro. In addition, proteomics analysis of MSC-sEV revealed that the indicated three types of MSC-sEV contained different quantities of proteins and shared 312 common proteins, which may be involved in the therapeutic effects of MSC-sEV. In total, our study demonstrated that MSC-sEV isolated by anion exchange chromatography were able to ameliorate Th2-dominant allergic airway inflammation through immunoregulation on pulmonary macrophages, suggesting that MSC-sEV were promising alternative therapy for allergic airway inflammation in the future.


Subject(s)
Extracellular Vesicles/metabolism , Hypersensitivity/immunology , Hypersensitivity/pathology , Immunomodulation , Inflammation/pathology , Lung/pathology , Macrophages/pathology , Mesenchymal Stem Cells/metabolism , Animals , Cell Differentiation , Cell Polarity , Extracellular Vesicles/ultrastructure , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Inflammation/immunology , Lung/immunology , Macrophages/metabolism , Mice, Inbred BALB C , Models, Biological , Proteome/metabolism
10.
Nat Commun ; 11(1): 2579, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32427893

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Proc Natl Acad Sci U S A ; 117(6): 3083-3092, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31980528

ABSTRACT

Inflammatory bowel disease (IBD) comprises chronic relapsing disorders of the gastrointestinal tract characterized pathologically by intestinal inflammation and epithelial injury. Here, we uncover a function of extracellular matrix protein 1 (ECM1) in promoting the pathogenesis of human and mouse IBD. ECM1 was highly expressed in macrophages, particularly tissue-infiltrated macrophages under inflammatory conditions, and ECM1 expression was significantly induced during IBD progression. The macrophage-specific knockout of ECM1 resulted in increased arginase 1 (ARG1) expression and impaired polarization into the M1 macrophage phenotype after lipopolysaccharide (LPS) treatment. A mechanistic study showed that ECM1 can regulate M1 macrophage polarization through the granulocyte-macrophage colony-stimulating factor/STAT5 signaling pathway. Pathological changes in mice with dextran sodium sulfate-induced IBD were alleviated by the specific knockout of the ECM1 gene in macrophages. Taken together, our findings show that ECM1 has an important function in promoting M1 macrophage polarization, which is critical for controlling inflammation and tissue repair in the intestine.


Subject(s)
Extracellular Matrix Proteins/metabolism , Inflammatory Bowel Diseases/metabolism , Macrophage Activation/physiology , Macrophages/metabolism , Animals , Arginase/metabolism , Disease Models, Animal , Extracellular Matrix Proteins/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Inflammatory Bowel Diseases/pathology , Intestines/pathology , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects , Macrophages/drug effects , Mice , Mice, Knockout , STAT5 Transcription Factor/metabolism , Signal Transduction
12.
Biomolecules ; 9(8)2019 08 05.
Article in English | MEDLINE | ID: mdl-31387327

ABSTRACT

Interleukin (IL)-38, a newly discovered IL-1 family cytokine, is expressed in several tissues and secreted by various cells. IL-38 has recently been reported to exert an anti-inflammatory function by binding to several receptors, including interleukin-36 receptor (IL-36R), interleukin-1 receptor accessory protein-like 1 (IL-1RAPL1), and interleukin-1 receptor 1 (IL-1R1) to block binding with other pro-inflammatory cytokines and inhibit subsequent signaling pathways; thereby regulating the differentiation and function of T cells, peripheral blood mononuclear cells, macrophages, and dendritic cells. Inflammatory autoimmune diseases, which are common immune-mediated inflammatory syndromes, are characterized by an imbalance between T helper cells (Ths), especially Th1s and Th17s, and regulatory T cells (Tregs). Recent findings have shown that abnormal expression of IL-38 in inflammatory autoimmune diseases, such as rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, primary Sjogren's syndrome, psoriasis, inflammatory bowel disease, hidradenitis suppurativa, ankylosing spondylitis, and glaucoma, involves Th1s, Th17s, and Tregs. In this review, the expression, regulation, and biological function of IL-38 are discussed, as are the roles of IL-38 in various inflammatory autoimmune disorders. Current data support that the IL-38/IL-36R and/or IL-38/IL-1RAPL1 axis primarily play an anti-inflammatory role in the development and resolution of inflammatory autoimmune diseases and indicate a possible therapeutic benefit of IL-38 in these diseases.


Subject(s)
Autoimmune Diseases/immunology , Inflammation/immunology , Interleukins/immunology , Humans
13.
Am J Transl Res ; 11(4): 2370-2381, 2019.
Article in English | MEDLINE | ID: mdl-31105843

ABSTRACT

Objective: To investigate the underlying molecular mechanisms contributing to oral squamous cell carcinoma (OSCC) cell resistance to the epidermal growth factor receptor (EGFR) inhibitor. Materials and methods: OSCC cell lines HSC-2 and HSC-3 were assessed in vitro for drug treatment, cell viability, and gene expression and the online gene expression in OSCC tissues was analyzed for association with OSCC prognosis. Results: HSC-2 and HSC-3 cells expressed high EGFR levels, but hepatocyte growth factor (HGF) treatment induced cetuximab resistance, whereas the Met inhibitor PHA-665752 as well as Met siRNA was able to restore OSCC cell sensitivity to cetuximab. HGF treatment induced tumor cells to express p-Akt and p-ERK1/2. In contrast, the activity of Akt and ERK1/2 was suppressed by treatment with PHA-665752, Met siRNA, or their combination. Furthermore, Met was highly expressed in OSCC tissues and associated with a poor patient survival, while Met/HGF-activated Akt also was associated with a poor patient survival. Conclusions: This study demonstrates that Met/HGF expression results in OSCC resistance to cetuximab and tumor recurrence after cetuximab therapy; thus, inhibition of Met/HGF activity could restore OSCC sensitivity to cetuximab.

14.
Medicine (Baltimore) ; 98(22): e15843, 2019 May.
Article in English | MEDLINE | ID: mdl-31145331

ABSTRACT

A clinically useful immune biomarker could potentially assist clinicians in their decision making. We stimulated T-cell proliferation to secret interferon gamma (IFN-γ) by phytohemagglutinin, and then measured the production of IFN-γ (mitogen value [M value]). We aimed to determine the relationship between the M value, clinical severity, and outcomes of diseases.In all, 484 patients admitted to intensive care units were enrolled in this retrospective study. The Acute Physiology and Chronic Health Evaluation II (APACHE II) scores were collected within the first 24 hours. M value, C-reaction protein (CRP), procalcitonin (PCT), erythrocyte sedimentation rate (ESR), and routine blood tests were analyzed and collected during the study.When APACHE II scores were greater than 15 and M values were less than 6, the hospital mortality rose in a straight line. There was an inverse correlation between APACHE II score and M value (rs = -0.212, P < .001). There was a positive correlation between M value and lymphocyte numbers (b' = 0.249, P < .001); however, there was an inverse correlation between M value and WBC (b' = -0.230, P < .001), and ESR (b' = -0.100, P = .029). Neurological diseases had the greatest influence on APACHE II scores (b' = 10.356, P < .001), whereas respiratory diseases had the greatest influence on M value (b' = 1.933, P < .001). Furthermore, in the respiratory system, severe pneumonia had a greater influence on M value. Taking the APACHE II score as the gold standard, the area under the curve of M was 0.632 (95% confidence interval [CI] 0.575-0.690, P < .001), PCT was 0.647 (95% CI 0.589-0.705, P < .001), CRP was 0.570 (95% CI 0.511-0.629, P = .022), and ESR was 0.553 (95% CI 0.494-0.612, P = .078). Divided by M value = 5, the positive predictive value of the M value is 37.22% (115/309) and negative predictive value is 75.43% (132/175).The results show that the M values, PCT, and CRP were better than ESR to predict the severity of diseases. The number and proportion of lymphocytes also affected the result of the M value. To a certain extent, the M value may be a clinically useful immune biomarker, which may help clinicians objectively evaluate the severity of diseases, especially in the respiratory system.


Subject(s)
APACHE , Interferon-gamma/blood , Mitogens/administration & dosage , Phytohemagglutinins/administration & dosage , Respiratory Tract Diseases/blood , Adolescent , Adult , Aged , Aged, 80 and over , Area Under Curve , Biomarkers/blood , Blood Sedimentation , C-Reactive Protein/analysis , Female , Humans , Intensive Care Units , Lymphocyte Count , Male , Middle Aged , Mitogens/immunology , Nervous System Diseases/blood , Phytohemagglutinins/immunology , Pneumonia/blood , Predictive Value of Tests , Procalcitonin/blood , Retrospective Studies , Young Adult
15.
Am J Transl Res ; 11(12): 7627-7643, 2019.
Article in English | MEDLINE | ID: mdl-31934306

ABSTRACT

Accumulating evidence has revealed that human gingiva-derived mesenchymal stem cells (GMSCs) are emerging as a new line of mesenchymal stem cells and may have the potential to control or even treat autoimmune diseases through maintaining the balance between Th and Treg cells. Given that GMSCs have a robust immune regulatory function and regenerative ability, we investigated the effect of GMSCs on preventing T cell-mediated bone marrow failure (BMF) in a mouse model. We observed that GMSCs markedly improved mice survival and attenuated histological bone marrow (BM) damage. Moreover, we found GMSCs significantly reduced cell infiltration of CD8+ cells, Th1 and Th17 cells, whereas increased CD4+Foxp3+ regulatory T cells (Tregs) differentiation in lymph nodes. GMSCs also suppressed the levels of TNF-α, IFN-γ, IL-17A and IL-6, but IL-10 was increased in serum. The live in vivo imaging identified that GMSCs can home into inflammatory location on BM. Our results demonstrate that GMSCs attenuate T cell-mediated BMF through regulating the balance of Th1, Th17 and Tregs, implicating that application of GMSCs may provide a promising approach in prevention and treatment of patients with aplastic anemia.

16.
Front Immunol ; 9: 2625, 2018.
Article in English | MEDLINE | ID: mdl-30510554

ABSTRACT

Type 1 regulatory CD4+ T (Tr1) cells express high levels of the immunosuppressive cytokine IL-10 but not the master transcription factor Foxp3, and can suppress inflammation and promote immune tolerance. In order to identify and obtain viable Tr1 cells for research and clinical applications, co-expression of CD49b and LAG3 has been proposed as a unique surface signature for both human and mouse Tr1 cells. However, recent studies have revealed that this pattern of co-expression is dependent on the stimulating conditions and the differentiation stage of the CD4+ T cells. Here, using an IL-10GFP/Foxp3RFP dual reporter transgenic murine model, we demonstrate that co-expression of CD49b and LAG3 is not restricted to the Foxp3- Tr1 cells, but is also observed in Foxp3+ T regulatory (Treg) cells and CD8+ T cells that produce IL-10. Our data indicate that IL-10-producing Tr1 cells, Treg cells and CD8+ T cells are all capable of co-expressing LAG3 and CD49b in vitro following differentiation under IL-10-inducing conditions, and in vivo following pathogenic insult or infection in the pulmonary mucosa. Our findings urge caution in the use of LAG3/CD49b co-expression as sole markers to identify Tr1 cells, since it may mark IL-10-producing T cell lineages more broadly, including the Foxp3- Tr1 cells, Foxp3+ Treg cells, and CD8+ T cells.


Subject(s)
Antigens, CD/metabolism , CD8-Positive T-Lymphocytes/metabolism , Integrin alpha2/metabolism , Interleukin-10/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Biomarkers/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Cell Lineage , Cells, Cultured , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Humans , Immune Tolerance , Interleukin-10/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , T-Lymphocytes, Regulatory/immunology , Lymphocyte Activation Gene 3 Protein
17.
Transl Stroke Res ; 9(6): 669-680, 2018 12.
Article in English | MEDLINE | ID: mdl-30203370

ABSTRACT

Systemic docosahexaenoic acid (DHA) has been explored as a clinically feasible protectant in stroke models. However, the mechanism for DHA-afforded neuroprotection remains elusive. Transient middle cerebral artery occlusion (tMCAO) was induced for 1 h. DHA (i.p., 10 mg/kg) was administered immediately after reperfusion and repeated daily for 3 days. Stroke outcomes, systemic inflammatory status, and microglia/macrophage phenotypic alterations were assessed 3 days after stroke. Macrophage depletion was induced by clodronate liposomes injection. Primary macrophage cultures were used to evaluate the direct effect of DHA on macrophages. We demonstrated that post-stroke DHA injection efficiently reduced brain infarct and ameliorated neurological deficits 3 days after tMCAO. Systemic DHA treatment significantly inhibited immune cell infiltration (macrophages, neutrophils, T lymphocytes, and B lymphocytes) and promoted macrophage polarization toward an anti-inflammatory M2 phenotype in the ischemic brain. Meanwhile, systemic DHA administration inhibited the otherwise elevated pro-inflammatory factors in blood and shifted circulating macrophage polarity toward M2 phenotype after ischemic stroke. The numbers of circulating immune cells in blood and spleen, however, were equivalent between DHA- and vehicle-treated groups. The protective effects of DHA were macrophage-dependent, as macrophage depletion abolished DHA-afforded neuroprotection. In vitro studies confirmed that DHA suppressed production of chemokines and pro-inflammatory cytokines from macrophages under inflammatory stimulation. These data indicate that post-stroke DHA treatment ameliorated acute ischemic brain injury in a macrophage-dependent manner and DHA enhanced macrophage phenotypic shift toward an anti-inflammatory phenotype to reduced central and peripheral inflammation after stroke.


Subject(s)
Brain Injuries/drug therapy , Brain Injuries/pathology , Cell Polarity/drug effects , Docosahexaenoic Acids/therapeutic use , Macrophages/drug effects , Microglia/drug effects , Neuroprotective Agents/therapeutic use , Analysis of Variance , Animals , Brain Injuries/etiology , Brain Ischemia/complications , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Female , Flow Cytometry , In Situ Nick-End Labeling , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Microglia/pathology , Nervous System Diseases/drug therapy , Nervous System Diseases/etiology , Neutrophil Infiltration/drug effects , Protein Array Analysis , RNA, Messenger/metabolism , Time Factors
18.
Oncoimmunology ; 6(7): e1334027, 2017.
Article in English | MEDLINE | ID: mdl-28811978

ABSTRACT

Optimal approaches to differentiate tumor antigen-specific cytotoxic T lymphocytes (CTLs) from pluripotent stem cells (PSCs) remain elusive. In the current study, we showed that combination of in vitro priming through Notch ligands and in vivo development facilitated the generation of tumor Ag-specific CTLs that effectively inhibited tumor growth. We co-cultured the murine induced PSCs (iPSCs) genetically modified with tyrosinase-related protein 2 (TRP2)-specific T cell receptors with OP9 cell line expressing both Notch ligands Delta-like 1 and 4 (OP9-DL1/DL4) for a week before adoptively transferred into recipient C67BL/6 mice. Three weeks later, B16 melanoma cells were inoculated subcutaneously, and the antitumor activity of the iPSC-derived T cells was assessed. We observed the development of the TRP2-specific iPSC-CD8+ T cells that responded to Ag stimulation and infiltrated into melanoma tissues, significantly inhibited the tumor growth, and improved the survival of the tumor-bearing mice. Thus, this approach may provide a novel effective strategy to treatment of malignant tumors.

19.
Nat Commun ; 8: 15871, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28635957

ABSTRACT

Type 1 regulatory T (Tr1) cells differentiate in response to signals engaging the T cell receptor (TCR), express high levels of the immunosuppressive cytokine IL-10, but not Foxp3, and can suppress inflammation and promote immune tolerance. Here we show that ITK, an important modulator of TCR signalling, is required for the TCR-induced development of Tr1 cells in various organs, and in the mucosal system during parasitic and viral infections. ITK kinase activity is required for mouse and human Tr1 cell differentiation. Tr1 cell development and suppressive function of Itk deficient cells can be restored by the expression of the transcription factor interferon regulatory factor 4 (IRF4). Downstream of ITK, Ras activity is responsible for Tr1 cell induction, as expression of constitutively active HRas rescues IRF4 expression and Tr1 cell differentiation in Itk-/- cells. We conclude that TCR/ITK signalling through the Ras/IRF4 pathway is required for functional development of Tr1 cells.


Subject(s)
Interferon Regulatory Factors/metabolism , Protein-Tyrosine Kinases/metabolism , T-Lymphocytes, Regulatory/physiology , ras Proteins/metabolism , Animals , Cell Differentiation , Humans , Interferon Regulatory Factors/genetics , Mice, Inbred C57BL , Mice, Transgenic , Orthomyxoviridae Infections/immunology , Positive Regulatory Domain I-Binding Factor 1/metabolism , Protein-Tyrosine Kinases/genetics , Signal Transduction , Strongylida Infections/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , ras Proteins/genetics
20.
Genes (Basel) ; 8(3)2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28272325

ABSTRACT

Notch is indispensable for T cell lineage commitment, and is needed for thymocyte differentiation at early phases. During early stages of T cell development, active Notch prevents other lineage potentials including B cell lineage and myeloid cell (e.g., dendritic cell) lineage. Nevertheless, the precise intracellular signaling pathways by which Notch promotes T cell differentiation remain unclear. Here we report that the transcription factor c-Myc is a key mediator of the Notch signaling-regulated T cell differentiation. In a well-established in vitro differentiation model of T lymphocytes from hematopoietic stem cells, we showed that Notch1 and 4 directly promoted c-Myc expression; dominant-negative (DN) c-Myc inhibited early T cell differentiation. Moreover, the c-Myc expression activated by Notch signaling increased the expression of survivin, an inhibitor of apoptosis (IAP) protein. We further demonstrated that over-expression of c-Myc increased the abundance of survivin and the T cell differentiation thereof, whereas dn c-Myc reduced survivin levels and concomitantly retarded the differentiation. The c-Myc-dependent survivin induction is functionally germane, because Notch-dependent T cell differentiation was canceled by the depletion of survivin. These results identify both c-Myc and survivin as important mediators of the Notch signaling-regulated differentiation of T lymphocytes from hematopoietic stem cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...