Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 18(46): e2204552, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36166669

ABSTRACT

The tremendous volume change and severe pulverization of micro-sized Sb anode generate no stable capacity in potassium-ion batteries (PIBs). The honeycomb-like porous structure provides free spaces to accommodate its volume expansion and offers efficient ion transport, yet complex synthesis and low yield limits its large-scale application. Here, a green, scalable template-free method for designing a 3D honeycomb-like interconnected porous micro-sized Sb (porous-Sb) is proposed. Its honeycomb-like porous formation mechanism is also verified. Under hydrothermal conditions, Sb reacts with water and dissolved oxygen in water, undergoing non-homogeneous and continuous corrosion at grain boundaries, and producing soluble H2 Sb2 O6 (H2 O), which regulates the porous structure of Sb by controlling reaction time. Benefiting from its porous structure and micron size, porous-Sb anode displays large gravimetric and volumetric capacities with 655.5 mAh g-1 and 2,001.9 mAh cm-3 at 0.05 A g-1 and superior rate performance of 441.9 mAh g-1 at 2.0 A g-1 in PIBs. Furthermore, ex situ characterization and kinetic analysis uncover the small volume expansion and fast K+ reaction kinetics of porous Sb during potassiation/depotassiation, originating from its large electrolyte contact area and internal expansion mechanism. It verifies a green, scalable template-free strategy to construct honeycomb-like porous metals for energy storage and conversion.

SELECTION OF CITATIONS
SEARCH DETAIL
...