Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
bioRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38826482

ABSTRACT

Background: The cardinal feature of systemic sclerosis (SSc) is skin thickening and tightening. Targetable mechanisms for skin features remain elusive. Drugs successful in treating internal organ manifestations have failed efficacy in skin. Dermal white adipose tissue (DWAT) is amongst the understudied contributors to skin manifestations. This study proposes the role of sine oculis homeobox homolog 1 (SIX1), a gene previously unrecognized as a contributor to dermal lipoatrophy characteristic of early skin fibrosis in SSc. Methods: Skin gene expression of SIX1 was analyzed in the GENISOS and PRESS SSc cohorts. Correlation analysis was performed with Spearman rank analysis. Novel mouse models were developed using the Cre-loxp system to knock out Six1 in all cells and mature adipocytes. Subcutaneous bleomycin was used to model early DWAT atrophy and dermal fibrosis characteristic of SSc. Findings: SIX1 was upregulated in SSc skin, the expression of which correlates with adipose-associated genes and molecular pathways. Genetic deletion of Six1 in all cells in mice challenged with bleomycin abrogated end-stage fibrotic gene expression and dermal adipocyte shrinkage. Adipocyte specific Six1 deletion was able to attenuate the early increase in skin thickness, a hallmark of experimental skin fibrosis. Further studies revealed a link between elevated SIX1 and increased expression of SERPINE1 and its protein PAI-1 which are known pro-fibrotic mediators. Interpretation: This work identifies SIX1 as an early marker of skin fibrosis in SSc. We also demonstrate a causative role of Six1 in skin fibrosis by promoting adipocyte loss and show that deletion of Six1 in adipocytes has the potential of impacting early disease progression.

2.
J Mol Med (Berl) ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940937

ABSTRACT

The rapidly aging population is consuming more alcohol, leading to increased alcohol-associated acute pancreatitis (AAP) with high mortality. However, the mechanisms remain undefined, and currently there are no effective therapies available. This study aims to elucidate aging- and alcohol-associated spatial transcriptomic signature by establishing an aging AAP mouse model and applying Visium spatial transcriptomics for understanding of the mechanisms in the context of the pancreatic tissue. Upon alcohol diet feeding and caerulein treatment, aging mice (18 months) developed significantly more severe AAP with 5.0-fold increase of injury score and 2.4-fold increase of amylase compared to young mice (3 months). Via Visium spatial transcriptomics, eight distinct tissue clusters were revealed from aggregated transcriptomes of aging and young AAP mice: five acinar, two stromal, and one islet, which were then merged into three clusters: acinar, stromal, and islet for the comparative analysis. Compared to young AAP mice, > 1300 differentially expressed genes (DEGs) and approximately 3000 differentially regulated pathways were identified in aging AAP mice. The top five DEGs upregulated in aging AAP mice include Mmp8, Ppbp, Serpina3m, Cxcl13, and Hamp with heterogeneous distributions among the clusters. Taken together, this study demonstrates spatial heterogeneity of inflammatory processes in aging AAP mice, offering novel insights into the mechanisms and potential drivers for AAP development. KEY MESSAGES: Mechanisms regarding high mortality of AAP in aging remain undefined. An aging AAP mouse model was developed recapturing clinical exhibition in humans. Spatial transcriptomics identified contrasted DEGs in aging vs. young AAP mice. Top five DEGs were Mmp8, Ppbp, Serpina3m, Cxcl13, and Hamp in aging vs. young AAP mice. Our findings shed insights for identification of molecular drivers in aging AAP.

3.
Res Sq ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746131

ABSTRACT

Background: The potential benefits of drug combination synergy in cancer medicine are significant, yet the risks must be carefully managed due to the possibility of increased toxicity. Although artificial intelligence applications have demonstrated notable success in predicting drug combination synergy, several key challenges persist: (1) Existing models often predict average synergy values across a restricted range of testing dosages, neglecting crucial dose amounts and the mechanisms of action of the drugs involved. (2) Many graph-based models rely on static protein-protein interactions, failing to adapt to dynamic and context-dependent networks. This limitation constrains the applicability of current methods. Results: We introduced SAFER, a Sub-hypergraph Attention-based graph model, addressing these issues by incorporating complex relationships among biological knowledge networks and considering dosing effects on subject-specific networks. SAFER outperformed previous models on the benchmark and the independent test set. The analysis of subgraph attention weight for the lung cancer cell line highlighted JAK-STAT signaling pathway, PRDM12, ZNF781, and CDC5L that have been implicated in lung fibrosis. Conclusions: SAFER presents an interpretable framework designed to identify drug-responsive signals. Tailored for comprehending dose effects on subject-specific molecular contexts, our model uniquely captures dose-level drug combination responses. This capability unlocks previously inaccessible avenues of investigation compared to earlier models. Finally, the SAFER framework can be leveraged by future inquiries to investigate molecular networks that uniquely characterize individual patients.

4.
NPJ Vaccines ; 9(1): 70, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561339

ABSTRACT

Human cytomegalovirus (HCMV) is a leading infectious cause of birth defects and the most common opportunistic infection that causes life-threatening diseases post-transplantation; however, an effective vaccine remains elusive. V160 is a live-attenuated replication defective HCMV vaccine that showed a 42.4% efficacy against primary HCMV infection among seronegative women in a phase 2b clinical trial. Here, we integrated the multicolor flow cytometry, longitudinal T cell receptor (TCR) sequencing, and single-cell RNA/TCR sequencing approaches to characterize the magnitude, phenotype, and functional quality of human T cell responses to V160. We demonstrated that V160 de novo induces IE-1 and pp65 specific durable polyfunctional effector CD8 T cells that are comparable to those induced by natural HCMV infection. We identified a variety of V160-responsive T cell clones which exhibit distinctive "transient" and "durable" expansion kinetics, and revealed a transcriptional signature that marks durable CD8 T cells post-vaccination. Our study enhances the understanding of human T-cell immune responses to V160 vaccination.

5.
Article in English | MEDLINE | ID: mdl-38520725

ABSTRACT

OBJECTIVES: The rapid expansion of biomedical literature necessitates automated techniques to discern relationships between biomedical concepts from extensive free text. Such techniques facilitate the development of detailed knowledge bases and highlight research deficiencies. The LitCoin Natural Language Processing (NLP) challenge, organized by the National Center for Advancing Translational Science, aims to evaluate such potential and provides a manually annotated corpus for methodology development and benchmarking. MATERIALS AND METHODS: For the named entity recognition (NER) task, we utilized ensemble learning to merge predictions from three domain-specific models, namely BioBERT, PubMedBERT, and BioM-ELECTRA, devised a rule-driven detection method for cell line and taxonomy names and annotated 70 more abstracts as additional corpus. We further finetuned the T0pp model, with 11 billion parameters, to boost the performance on relation extraction and leveraged entites' location information (eg, title, background) to enhance novelty prediction performance in relation extraction (RE). RESULTS: Our pioneering NLP system designed for this challenge secured first place in Phase I-NER and second place in Phase II-relation extraction and novelty prediction, outpacing over 200 teams. We tested OpenAI ChatGPT 3.5 and ChatGPT 4 in a Zero-Shot setting using the same test set, revealing that our finetuned model considerably surpasses these broad-spectrum large language models. DISCUSSION AND CONCLUSION: Our outcomes depict a robust NLP system excelling in NER and RE across various biomedical entities, emphasizing that task-specific models remain superior to generic large ones. Such insights are valuable for endeavors like knowledge graph development and hypothesis formulation in biomedical research.

6.
bioRxiv ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38464054

ABSTRACT

Alternative splicing is an important cellular process in eukaryotes, altering pre-mRNA to yield multiple protein isoforms from a single gene. However, our understanding of the impact of alternative splicing events on protein structures is currently constrained by a lack of sufficient protein structural data. To address this limitation, we employed AlphaFold 2, a cutting-edge protein structure prediction tool, to conduct a comprehensive analysis of alternative splicing for approximately 3,000 human genes, providing valuable insights into its impact on the protein structural. Our investigation employed state of the art high-performance computing infrastructure to systematically characterize structural features in alternatively spliced regions and identified changes in protein structure following alternative splicing events. Notably, we found that alternative splicing tends to alter the structure of residues primarily located in coils and beta-sheets. Our research highlighted a significant enrichment of loops and highly exposed residues within human alternatively spliced regions. Specifically, our examination of the Septin-9 protein revealed potential associations between loops and alternative splicing, providing insights into its evolutionary role. Furthermore, our analysis uncovered two missense mutations in the Tau protein that could influence alternative splicing, potentially contributing to the pathogenesis of Alzheimer's disease. In summary, our work, through a thorough statistical analysis of extensive protein structural data, sheds new light on the intricate relationship between alternative splicing, evolution, and human disease.

7.
Nat Commun ; 15(1): 1373, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355560

ABSTRACT

SMARCB1 loss has long been observed in many solid tumors. However, there is a need to elucidate targetable pathways driving growth and metastasis in SMARCB1-deficient tumors. Here, we demonstrate that SMARCB1 deficiency, defined as genomic SMARCB1 copy number loss associated with reduced mRNA, drives disease progression in patients with bladder cancer by engaging STAT3. SMARCB1 loss increases the chromatin accessibility of the STAT3 locus in vitro. Orthotopically implanted SMARCB1 knockout (KO) cell lines exhibit increased tumor growth and metastasis. SMARCB1-deficient tumors show an increased IL6/JAK/STAT3 signaling axis in in vivo models and patients. Furthermore, a pSTAT3 selective inhibitor, TTI-101, reduces tumor growth in SMARCB1 KO orthotopic cell line-derived xenografts and a SMARCB1-deficient patient derived xenograft model. We have identified a gene signature generated from SMARCB1 KO tumors that predicts SMARCB1 deficiency in patients. Overall, these findings support the clinical evaluation of STAT3 inhibitors for the treatment of SMARCB1-deficient bladder cancer.


Subject(s)
Interleukin-6 , Urinary Bladder Neoplasms , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Signal Transduction/genetics , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Urinary Bladder Neoplasms/genetics , Cell Line, Tumor , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
8.
medRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014193

ABSTRACT

Background: Deep learning models showed great success and potential when applied to many biomedical problems. However, the accuracy of deep learning models for many disease prediction problems is affected by time-varying covariates, rare incidence, and covariate imbalance when using structured electronic health records data. The situation is further exasperated when predicting the risk of one disease on condition of another disease, such as the hepatocellular carcinoma risk among patients with nonalcoholic fatty liver disease due to slow, chronic progression, the scarce of data with both disease conditions and the sex bias of the diseases. Objective: The goal of this study is to investigate the extent to which time-varying covariates, rare incidence, and covariate imbalance influence deep learning performance, and then devised strategies to tackle these challenges. These strategies were applied to improve hepatocellular carcinoma risk prediction among patients with nonalcoholic fatty liver disease. Methods: We evaluated two representative deep learning models in the task of predicting the occurrence of hepatocellular carcinoma in a cohort of patients with nonalcoholic fatty liver disease (n = 220,838) from a national EHR database. The disease prediction task was carefully formulated as a classification problem while taking censorship and the length of follow-up into consideration. Results: We developed a novel backward masking scheme to evaluate how the length of longitudinal information after the index date affects disease prediction. We observed that modeling time-varying covariates improved the performance of the algorithms and transfer learning mitigated reduced performance caused by the lack of data. In addition, covariate imbalance, such as sex bias in data impaired performance. Deep learning models trained on one sex and evaluated in the other sex showed reduced performance, indicating the importance of assessing covariate imbalance while preparing data for model training. Conclusions: Devising proper strategies to address challenges from time-varying covariates, lack of data, and covariate imbalance can be key to counteracting data bias and accurately predicting disease occurrence using deep learning models. The novel strategies developed in this work can significantly improve the performance of hepatocellular carcinoma risk prediction among patients with nonalcoholic fatty liver disease. Furthermore, our novel strategies can be generalized to apply to other disease risk predictions using structured electronic health records, especially for disease risks on condition of another disease.

9.
Res Sq ; 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37503250

ABSTRACT

Background and methods: Disease risk prediction based on DNA sequence and transcriptional profile can improve disease screening, prevention, and potential therapeutic approaches by revealing contributing genetic factors and altered regulatory networks. Despite identifying many disease-associated DNA variants through genome-wide association studies, distinguishing deleterious non-coding DNA variations remains poor for most common diseases. We previously reported that non-coding variations disrupting cis-overlapping motifs (CisOMs) of opposing transcription factors significantly affect enhancer activity. We designed in vitro experiments to uncover the significance of the co-occupancy and competitive binding and inhibition between P53 and cMYC on common target gene expression. Results: Analyzing publicly available ChIP-seq data for P53 and cMYC in human embryonic stem cells and mouse embryonic cells showed that ~ 344-366 genomic regions are co-occupied by P53 and cMYC. We identified, on average, two CisOMs per region, suggesting that co-occupancy is evolutionarily conserved in vertebrates. Our data showed that treating U2OS cells with doxorubicin increased P53 protein level while reducing cMYC level. In contrast, no change in protein levels was observed in Raji cells. ChIP-seq analysis illustrated that 16-922 genomic regions were co-occupied by P53 and cMYC before and after treatment, and substitutions of cMYC signals by P53 were detected after doxorubicin treatment in U2OS. Around 187 expressed genes near co-occupied regions were altered at mRNA level according to RNA-seq data. We utilized a computational motif-matching approach to determine that changes in predicted P53 binding affinity by DNA variations in CisOMs of co-occupied elements significantly correlate with alterations in reporter gene expression. We performed a similar analysis using SNPs mapped in CisOMs for P53 and cMYC from ChIP-seq data in U2OS and Raji, and expression of target genes from the GTEx portal. Conclusions: We found a significant correlation between change in motif-predicted cMYC binding affinity by SNPs in CisOMs and altered gene expression. Our study brings us closer to developing a generally applicable approach to filter etiological non-coding variations associated with P53 and cMYC-dependent diseases.

10.
JCO Clin Cancer Inform ; 7: e2200141, 2023 04.
Article in English | MEDLINE | ID: mdl-37018650

ABSTRACT

PURPOSE: Early detection of brain metastases (BMs) is critical for prompt treatment and optimal control of the disease. In this study, we seek to predict the risk of developing BM among patients diagnosed with lung cancer on the basis of electronic health record (EHR) data and to understand what factors are important for the model to predict BM development through explainable artificial intelligence approaches accurately. MATERIALS AND METHODS: We trained a recurrent neural network model, REverse Time AttentIoN (RETAIN), to predict the risk of developing BM using structured EHR data. To interpret the model's decision process, we analyzed the attention weights in the RETAIN model and the SHAP values from a feature attribution method, Kernel SHAP, to identify the factors contributing to BM prediction. RESULTS: We developed a high-quality cohort with 4,466 patients with BM from the Cerner Health Fact database, which contains over 70 million patients from more than 600 hospitals. RETAIN uses this data set to achieve the best area under the receiver operating characteristic curve at 0.825, a significant improvement over the baseline model. We also extended a feature attribution method, Kernel SHAP, to structured EHR data for model interpretation. Both RETAIN and Kernel SHAP can identify important features related to BM prediction. CONCLUSION: To the best of our knowledge, this is the first study to predict BM using structured EHR data. We achieved decent prediction performance for BM prediction and identified factors highly relevant to BM development. The sensitivity analysis demonstrated that both RETAIN and Kernel SHAP could discriminate unrelated features and put more weight on the features important to BM. Our study explored the potential of applying explainable artificial intelligence for future clinical applications.


Subject(s)
Brain Neoplasms , Lung Neoplasms , Humans , Artificial Intelligence , Electronic Health Records , Early Detection of Cancer , Brain Neoplasms/secondary
11.
Cell Rep ; 42(3): 112239, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36906851

ABSTRACT

It is widely believed that hematopoiesis after birth is established by hematopoietic stem cells (HSCs) in the bone marrow and that HSC-independent hematopoiesis is limited only to primitive erythro-myeloid cells and tissue-resident innate immune cells arising in the embryo. Here, surprisingly, we find that significant percentages of lymphocytes are not derived from HSCs, even in 1-year-old mice. Instead, multiple waves of hematopoiesis occur from embryonic day 7.5 (E7.5) to E11.5 endothelial cells, which simultaneously produce HSCs and lymphoid progenitors that constitute many layers of adaptive T and B lymphocytes in adult mice. Additionally, HSC lineage tracing reveals that the contribution of fetal liver HSCs to peritoneal B-1a cells is minimal and that the majority of B-1a cells are HSC independent. Our discovery of extensive HSC-independent lymphocytes in adult mice attests to the complex blood developmental dynamics spanning the embryo-to-adult transition and challenges the paradigm of HSCs exclusively underpinning the postnatal immune system.


Subject(s)
Endothelial Cells , Hematopoietic Stem Cells , Animals , Mice , Cell Lineage , Bone Marrow , Hematopoiesis
12.
J Immunother Cancer ; 10(7)2022 07.
Article in English | MEDLINE | ID: mdl-35902132

ABSTRACT

BACKGROUND: Oncolytic viruses are considered part of immunotherapy and have shown promise in preclinical experiments and clinical trials. Results from these studies have suggested that tumor microenvironment remodeling is required to achieve an effective response in solid tumors. Here, we assess the extent to which targeting specific mechanisms underlying the immunosuppressive tumor microenvironment optimizes viroimmunotherapy. METHODS: We used RNA-seq analyses to analyze the transcriptome, and validated the results using Q-PCR, flow cytometry, and immunofluorescence. Viral activity was analyzed by replication assays and viral titration. Kyn and Trp metabolite levels were quantified using liquid chromatography-mass spectrometry. Aryl hydrocarbon receptor (AhR) activation was analyzed by examination of promoter activity. Therapeutic efficacy was assessed by tumor histopathology and survival in syngeneic murine models of gliomas, including Indoleamine 2,3-dioxygenase (IDO)-/- mice. Flow cytometry was used for immunophenotyping and quantification of cell populations. Immune activation was examined in co-cultures of immune and cancer cells. T-cell depletion was used to identify the role played by specific cell populations. Rechallenge experiments were performed to identify the development of anti-tumor memory. RESULTS: Bulk RNA-seq analyses showed the activation of the immunosuppressive IDO-kynurenine-AhR circuitry in response to Delta-24-RGDOX infection of tumors. To overcome the effect of this pivotal pathway, we combined Delta-24-RGDOX with clinically relevant IDO inhibitors. The combination therapy increased the frequency of CD8+ T cells and decreased the rate of myeloid-derived suppressor cell and immunosupressive Treg tumor populations in animal models of solid tumors. Functional studies demonstrated that IDO-blockade-dependent activation of immune cells against tumor antigens could be reversed by the oncometabolite kynurenine. The concurrent targeting of the effectors and suppressors of the tumor immune landscape significantly prolonged the survival in animal models of orthotopic gliomas. CONCLUSIONS: Our data identified for the first time the in vivo role of IDO-dependent immunosuppressive pathways in the resistance of solid tumors to oncolytic adenoviruses. Specifically, the IDO-Kyn-AhR activity was responsible for the resurface of local immunosuppression and resistance to therapy, which was ablated through IDO inhibition. Our data indicate that combined molecular and immune therapy may improve outcomes in human gliomas and other cancers treated with virotherapy.


Subject(s)
Glioma , Oncolytic Viruses , Animals , CD8-Positive T-Lymphocytes/metabolism , Glioma/therapy , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase , Kynurenine/metabolism , Mice , Oncolytic Viruses/genetics , Oncolytic Viruses/metabolism , Synapses/metabolism , Tumor Microenvironment
13.
Oncotarget ; 13: 600-613, 2022.
Article in English | MEDLINE | ID: mdl-35401937

ABSTRACT

Breast cancer (BC) is the most common type of cancer diagnosed in women. Among female cancer deaths, BC is the second leading cause of death worldwide. For estrogen receptor-positive (ER-positive) breast cancers, endocrine therapy is an effective therapeutic approach. However, in many cases, an ER-positive tumor becomes unresponsive to endocrine therapy, and tumor regrowth occurs after treatment. While some genetic mutations contribute to resistance in some patients, the underlying causes of resistance to endocrine therapy are mostly undetermined. In this study, we utilized a recently developed statistical approach to investigate the dynamic behavior of gene expression during the development of endocrine resistance and identified a novel group of genes whose time course expression significantly change during cell modelling of endocrine resistant BC development. Expression of a subset of these genes was also differentially expressed in microarray analysis of endocrine-resistant and endocrine-sensitive tumor samples. Surprisingly, a subset of those genes was also differentially genes expressed in triple-negative breast cancer (TNBC) as compared with ER-positive BC. The findings suggest shared genetic mechanisms may underlie the development of endocrine resistant BC and TNBC. Our findings identify 34 novel genes for further study as potential therapeutic targets for treatment of endocrine-resistant BC and TNBC.


Subject(s)
Breast Neoplasms , Endocrine Gland Neoplasms , Triple Negative Breast Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Endocrine Gland Neoplasms/genetics , Female , Gene Expression , Gene Expression Regulation, Neoplastic , Humans , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Triple Negative Breast Neoplasms/genetics
14.
Brief Bioinform ; 23(3)2022 05 13.
Article in English | MEDLINE | ID: mdl-35419584

ABSTRACT

Gene Ontology (GO) is widely used in the biological domain. It is the most comprehensive ontology providing formal representation of gene functions (GO concepts) and relations between them. However, unintentional quality defects (e.g. missing or erroneous relations) in GO may exist due to the large size of GO concepts and complexity of GO structures. Such quality defects would impact the results of GO-based analyses and applications. In this work, we introduce a novel evidence-based lexical pattern approach for quality assurance of GO relations. We leverage two layers of evidence to suggest potentially missing relations in GO as follows. We first utilize related concept pairs (i.e. existing relations) in GO to extract relationship-specific lexical patterns, which serve as the first layer evidence to automatically suggest potentially missing relations between unrelated concept pairs. For each suggested missing relation, we further identify two other existing relations as the second layer of evidence that resemble the difference between the missing relation and the existing relation based on which the missing relation is suggested. Applied to the 15 December 2021 release of GO, this approach suggested a total of 866 potentially missing relations. Local domain experts evaluated the entire set of potentially missing relations, and identified 821 as missing relations and 45 indicate erroneous existing relations. We submitted these findings to the GO consortium for further validation and received encouraging feedback. These indicate that our evidence-based approach can be utilized to uncover missing relations and erroneous existing relations in GO.


Subject(s)
Gene Ontology
15.
Bioinformatics ; 38(8): 2096-2101, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35176131

ABSTRACT

MOTIVATION: Cross-sectional analyses of primary cancer genomes have identified regions of recurrent somatic copy-number alteration, many of which result from positive selection during cancer formation and contain driver genes. However, no effective approach exists for identifying genomic loci under significantly different degrees of selection in cancers of different subtypes, anatomic sites or disease stages. RESULTS: CNGPLD is a new tool for performing case-control somatic copy-number analysis that facilitates the discovery of differentially amplified or deleted copy-number aberrations in a case group of cancer compared with a control group of cancer. This tool uses a Gaussian process statistical framework in order to account for the covariance structure of copy-number data along genomic coordinates and to control the false discovery rate at the region level. AVAILABILITY AND IMPLEMENTATION: CNGPLD is freely available at https://bitbucket.org/djhshih/cngpld as an R package. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome , Neoplasms , Humans , Cross-Sectional Studies , Genomics , DNA Copy Number Variations , Neoplasms/genetics , Case-Control Studies , Software
16.
Ann Rheum Dis ; 81(6): 854-860, 2022 06.
Article in English | MEDLINE | ID: mdl-35190386

ABSTRACT

OBJECTIVES: To characterise the peripheral blood cell (PBC) gene expression changes ensuing from mycophenolate mofetil (MMF) or cyclophosphamide (CYC) treatment and to determine the predictive significance of baseline PBC transcript scores for response to immunosuppression in systemic sclerosis (SSc)-related interstitial lung disease (ILD). METHODS: PBC RNA samples from baseline and 12-month visits, corresponding to the active treatment period of both arms in Scleroderma Lung Study II, were investigated by global RNA sequencing. Joint models were created to examine the predictive significance of baseline composite modular scores for the course of forced vital capacity (FVC) per cent predicted measurements from 3 to 12 months. RESULTS: 134 patients with SSc-ILD (CYC=69 and MMF=65) were investigated. CYC led to an upregulation of erythropoiesis, inflammation and myeloid lineage-related modules and a downregulation of lymphoid lineage-related modules. The modular changes resulting from MMF treatment were more modest and included a downregulation of plasmablast module. In the longitudinal analysis, none of the baseline transcript module scores showed predictive significance for FVC% course in the CYC arm. In contrast, in the MMF arm, higher baseline lymphoid lineage modules predicted better subsequent FVC% course, while higher baseline myeloid lineage and inflammation modules predicted worse subsequent FVC% course. CONCLUSION: Consistent with the primary mechanism of action of MMF on lymphocytes, patients with SSc-ILD with higher baseline lymphoid module scores had better FVC% course, while those with higher myeloid cell lineage activation score had poorer FVC% course on MMF.


Subject(s)
Lung Diseases, Interstitial , Scleroderma, Systemic , Cyclophosphamide/therapeutic use , Gene Expression Profiling , Humans , Immunosuppressive Agents/therapeutic use , Inflammation , Lung , Lung Diseases, Interstitial/etiology , Lung Diseases, Interstitial/genetics , Mycophenolic Acid/therapeutic use , Scleroderma, Systemic/complications , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/genetics , Vital Capacity
17.
Am J Respir Cell Mol Biol ; 66(1): 53-63, 2022 01.
Article in English | MEDLINE | ID: mdl-34370624

ABSTRACT

Idiopathic pulmonary fibrosis (IPF), a devastating, fibroproliferative, chronic lung disorder, is associated with expansion of fibroblasts/myofibroblasts, which leads to excessive production and deposition of extracellular matrix. IPF is typically clinically identified as end-stage lung disease, after fibrotic processes are well-established and advanced. Fibroblasts have been shown to be critically important in the development and progression of IPF. We hypothesize that differential chromatin access can drive genetic differences in IPF fibroblasts relative to healthy fibroblasts. To this end, we performed assay of transposase-accessible chromatin sequencing to identify differentially accessible regions within the genomes of fibroblasts from healthy and IPF lungs. Multiple motifs were identified to be enriched in IPF fibroblasts compared with healthy fibroblasts, including binding motifs for TWIST1 and FOXA1. RNA sequencing identified 93 genes that could be annotated to differentially accessible regions. Pathway analysis of the annotated genes identified cellular adhesion, cytoskeletal anchoring, and cell differentiation as important biological processes. In addition, single nucleotide polymorphism analysis showed that linkage disequilibrium blocks of IPF risk single nucleotide polymorphisms with IPF-accessible regions that have been identified to be located in genes that are important in IPF, including MUC5B, TERT, and TOLLIP. Validation studies in isolated lung tissue confirmed increased expression for TWIST1 and FOXA1 in addition to revealing SHANK2 and CSPR2 as novel targets. Thus, modulation of differential chromatin access may be an important mechanism in the pathogenesis of lung fibrosis.


Subject(s)
Epigenesis, Genetic , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Transcriptome/genetics , Base Sequence , Chromatin/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Humans , Molecular Sequence Annotation , Polymorphism, Single Nucleotide/genetics , Transcription Factors/metabolism , Transposases/metabolism
18.
Front Immunol ; 12: 691216, 2021.
Article in English | MEDLINE | ID: mdl-34177951

ABSTRACT

Failure of resolution pathways in periodontitis is reflected in levels of specialized pro-resolving lipid mediators (SPMs) and SPM pathway markers but their relationship with the subgingival microbiome is unclear. This study aimed to analyze and integrate lipid mediator level, SPM receptor gene expression and subgingival microbiome data in subjects with periodontitis vs. healthy controls. The study included 13 periodontally healthy and 15 periodontitis subjects that were evaluated prior to or after non-surgical periodontal therapy. Samples of gingival tissue and subgingival plaque were collected prior to and 8 weeks after non-surgical treatment; only once in the healthy group. Metabololipidomic analysis was performed to measure levels of SPMs and other relevant lipid mediators in gingiva. qRT-PCR assessed relative gene expression (2-ΔΔCT) of known SPM receptors. 16S rRNA sequencing evaluated the relative abundance of bacterial species in subgingival plaque. Correlations between lipid mediator levels, receptor gene expression and bacterial abundance were analyzed using the Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO) and Sparse Partial Least Squares (SPLS) methods. Profiles of lipid mediators, receptor genes and the subgingival microbiome were distinct in the three groups. The strongest correlation existed between lipid mediator profile and subgingival microbiome profile. Multiple lipid mediators and bacterial species were highly correlated (correlation coefficient ≥0.6) in different periodontal conditions. Comparing individual correlated lipid mediators and bacterial species in periodontitis before treatment to healthy controls revealed that one bacterial species, Corynebacterium durum, and five lipid mediators, 5(S)6(R)-DiHETE, 15(S)-HEPE, 7-HDHA, 13-HDHA and 14-HDHA, were identified in both conditions. Comparing individual correlated lipid mediators and bacterial species in periodontitis before treatment to after treatment revealed that one bacterial species, Anaeroglobus geminatus, and four lipid mediators, 5(S)12(S)-DiHETE, RvD1, Maresin 1 and LTB4, were identified in both conditions. Four Selenomonas species were highly correlated with RvD1, RvE3, 5(S)12(S)-DiHETE and proinflammatory mediators in the periodontitis after treatment group. Profiles of lipid mediators, receptor gene and subgingival microbiome are associated with periodontal inflammation and correlated with each other, suggesting inflammation mediated by lipid mediators influences microbial composition in periodontitis. The role of correlated individual lipid mediators and bacterial species in periodontal inflammation have to be further studied.


Subject(s)
Gingiva/metabolism , Gingiva/microbiology , Lipid Metabolism , Metabolome , Microbiota , Periodontitis/metabolism , Periodontitis/microbiology , Adaptor Proteins, Signal Transducing/genetics , Adult , Bacteria/genetics , Female , Humans , Lipids , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , Receptors, Chemokine/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Leukotriene B4/genetics , Young Adult
19.
Nat Commun ; 12(1): 2031, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795676

ABSTRACT

Patient-derived xenografts are crucial for drug development but their use is challenged by issues such as murine viral infection. We evaluate the scope of viral infection and its impact on patient-derived xenografts by taking an unbiased data-driven approach to analyze unmapped RNA-Seq reads from 184 experiments. We find and experimentally validate the extensive presence of murine viral sequence reads covering entire viral genomes in patient-derived xenografts. The existence of viral sequences inside tumor cells is further confirmed by single cell sequencing data. Extensive chimeric reads containing both viral and human sequences are also observed. Furthermore, we find significantly changed expression levels of many cancer-, immune-, and drug metabolism-related genes in samples with high virus load. Our analyses indicate a need to carefully evaluate the impact of viral infection on patient-derived xenografts for drug development. They also point to a need for attention to quality control of patient-derived xenograft experiments.


Subject(s)
Genome, Viral/genetics , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Sequence Analysis, DNA/methods , Xenograft Model Antitumor Assays/methods , Animals , Cell Line, Tumor , Gene Products, env/classification , Gene Products, env/genetics , Gene Products, gag/classification , Gene Products, gag/genetics , Heterografts/metabolism , Heterografts/virology , Humans , Mice , Neoplasms/classification , Neoplasms/virology , Phylogeny , Virus Diseases/genetics , Virus Diseases/virology
20.
ACM BCB ; 20212021 Aug.
Article in English | MEDLINE | ID: mdl-35330920

ABSTRACT

Automatic segmentation of thoracic cavity structures in computer tomography (CT) is a key step for applications ranging from radiotherapy planning to imaging biomarker discovery with radiomics approaches. State-of-the-art segmentation can be provided by fully convolutional neural networks such as the U-Net or V-Net. However, there is a very limited body of work on a comparative analysis of the performance of these architectures for chest CTs with significant neoplastic disease. In this work, we compared four different types of fully convolutional architectures using the same pre-processing and post-processing pipelines. These methods were evaluated using a dataset of CT images and thoracic cavity segmentations from 402 cancer patients. We found that these methods achieved very high segmentation performance by benchmarks of three evaluation criteria, i.e. Dice coefficient, average symmetric surface distance and 95% Hausdorff distance. Overall, the two-stage 3D U-Net model performed slightly better than other models, with Dice coefficients for left and right lung reaching 0.947 and 0.952, respectively. However, 3D U-Net model achieved the best performance under the evaluation of HD95 for right lung and ASSD for both left and right lung. These results demonstrate that the current state-of-art deep learning models can work very well for segmenting not only healthy lungs but also the lung containing different stages of cancerous lesions. The comprehensive types of lung masks from these evaluated methods enabled the creation of imaging-based biomarkers representing both healthy lung parenchyma and neoplastic lesions, allowing us to utilize these segmented areas for the downstream analysis, e.g. treatment planning, prognosis and survival prediction.

SELECTION OF CITATIONS
SEARCH DETAIL
...