Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Animals (Basel) ; 12(19)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36230394

ABSTRACT

With the rapid development of computer vision, the application of computer vision to precision farming in animal husbandry is currently a hot research topic. Due to the scale of goose breeding continuing to expand, there are higher requirements for the efficiency of goose farming. To achieve precision animal husbandry and to avoid human influence on breeding, real-time automated monitoring methods have been used in this area. To be specific, on the basis of instance segmentation, the activities of individual geese are accurately detected, counted, and analyzed, which is effective for achieving traceability of the condition of the flock and reducing breeding costs. We trained QueryPNet, an advanced model, which could effectively perform segmentation and extraction of geese flock. Meanwhile, we proposed a novel neck module that improved the feature pyramid structure, making feature fusion more effective for both target detection and instance individual segmentation. At the same time, the number of model parameters was reduced by a rational design. This solution was tested on 639 datasets collected and labeled on specially created free-range goose farms. With the occlusion of vegetation and litters, the accuracies of the target detection and instance segmentation reached 0.963 (mAP@0.5) and 0.963 (mAP@0.5), respectively.

2.
Animals (Basel) ; 12(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35565603

ABSTRACT

The sex ratio is an important factor affecting the economic benefits of duck groups in the process of hemp duck breeding. However, the current manual counting method is inefficient, and the results are not always accurate. On the one hand, ducks are in constant motion, and on the other hand, the manual counting method relies on manpower; thus, it is difficult to avoid repeated and missed counts. In response to these problems, there is an urgent need for an efficient and accurate way of calculating the sex ratio of ducks to promote the farming industry. Detecting the sex ratio of ducks requires accurate counting of male ducks and female ducks. We established the world's first manually marked sex classification dataset for hemp ducks, including 1663 images of duck groups; 17,090 images of whole, individual duck bodies; and 15,797 images of individual duck heads, which were manually captured and had sex information markers. Additionally, we used multiple deep neural network models for the target detection and sex classification of ducks. The average accuracy reached 98.68%, and with the combination of Yolov5 and VovNet_27slim, we achieved 99.29% accuracy, 98.60% F1 score, and 269.68 fps. The evaluation of the algorithm's performance indicates that the automation method proposed in this paper is feasible for the sex classification of ducks in the farm environment, and is thus a feasible tool for sex ratio estimation.

3.
PeerJ Comput Sci ; 8: e847, 2022.
Article in English | MEDLINE | ID: mdl-35174267

ABSTRACT

Remote sensing technology has the advantages of fast information acquisition, short cycle, and a wide detection range. It is frequently used in surface resource monitoring tasks. However, traditional remote sensing image segmentation technology cannot make full use of the rich spatial information of the image, the workload is too large, and the accuracy is not high enough. To address these problems, this study carried out atmospheric calibration, band combination, image fusion, and other data enhancement methods for Landsat 8 satellite remote sensing data to improve the data quality. In addition, deep learning is applied to remote-sensing image block segmentation. An asymmetric convolution-CBAM (AC-CBAM) module based on the convolutional block attention module is proposed. This optimization module of the integrated attention and sliding window prediction method is adopted to effectively improve the segmentation accuracy. In the experiment of test data, the mIoU, mAcc, and aAcc in this study reached 97.34%, 98.66%, and 98.67%, respectively, which is 1.44% higher than that of DNLNet (95.9%). The AC-CBAM module of this research provides a reference for deep learning to realize the automation of remote sensing land information extraction. The experimental code of our AC-CBAM module can be found at https://github.com/LinB203/remotesense.

SELECTION OF CITATIONS
SEARCH DETAIL