Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Viruses ; 16(4)2024 03 29.
Article in English | MEDLINE | ID: mdl-38675873

ABSTRACT

Tobamoviruses are a group of plant viruses that pose a significant threat to agricultural crops worldwide. In this review, we focus on plant immunity against tobamoviruses, including pattern-triggered immunity (PTI), effector-triggered immunity (ETI), the RNA-targeting pathway, phytohormones, reactive oxygen species (ROS), and autophagy. Further, we highlight the genetic resources for resistance against tobamoviruses in plant breeding and discuss future directions on plant protection against tobamoviruses.


Subject(s)
Plant Diseases , Plant Immunity , Tobamovirus , Plant Diseases/virology , Plant Diseases/immunology , Tobamovirus/immunology , Tobamovirus/genetics , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/immunology , Disease Resistance/immunology , Host-Pathogen Interactions/immunology , Autophagy/immunology , Plant Growth Regulators , Crops, Agricultural/immunology , Crops, Agricultural/virology
2.
J Biomed Res ; 37(6): 460-469, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38018421

ABSTRACT

ELABELA (ELA), an endogenous ligand of the apelin receptor (also known as apelin peptide jejunum [APJ]), has been shown to decrease in the plasma of patients with diabetic kidney disease (DKD). In the current study, we explored the potential function as well as the underlying mechanisms of ELA in DKD. We first found that the ELA levels were decreased in the kidneys of DKD mice. Then, we found that ELA administration mitigated renal damage and downregulated the expression of fibronectin, collagen Ⅳ, and transforming growth factor-ß1 in the db/db mice and the high glucose cultured HK-2 cells. Furthermore, the autophagy markers, Beclin-1 and LC3-Ⅱ/LC3-Ⅰ ratio, were significantly impaired in DKD, but the ELA treatment reversed these alterations. Mechanistically, the inhibitory effects of ELA on the secretion of fibrosis-associated proteins in high glucose conditions were blocked by pretreatment with 3-methyladenine (an autophagy inhibitor). In summary, these in vivo and in vitro results demonstrate that ELA effectively protects against DKD by activating high glucose-inhibited renal tubular autophagy, potentially serving as a novel therapeutic candidate for DKD.

3.
Plant Physiol ; 193(1): 708-720, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37073495

ABSTRACT

Autophagy plays an important role in plant antiviral defense. Several plant viruses are reported to encode viral suppressor of autophagy (VSA) to prevent autophagy for effective virus infection. However, whether and how other viruses, in particular DNA viruses, also encode VSAs to affect viral infection in plants is unknown. Here, we report that the C4 protein encoded by Cotton leaf curl Multan geminivirus (CLCuMuV) inhibits autophagy by binding to the autophagy negative regulator eukaryotic translation initiation factor 4A (eIF4A) to enhance the eIF4A-Autophagy-related protein 5 (ATG5) interaction. By contrast, the R54A or R54K mutation in C4 abolishes its capacity to interact with eIF4A, and neither C4R54A nor C4R54K can suppress autophagy. However, the R54 residue is not essential for C4 to interfere with transcriptional gene silencing or post-transcriptional gene silencing. Moreover, plants infected with mutated CLCuMuV-C4R54K develop less severe symptoms with decreased levels of viral DNA. These findings reveal a molecular mechanism underlying how the DNA virus CLCuMuV deploys a VSA to subdue host cellular antiviral autophagy defense and uphold viral infection in plants.


Subject(s)
Begomovirus , Virus Diseases , Nicotiana/genetics , Begomovirus/genetics , Proteins/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , Autophagy/genetics , Antiviral Agents/metabolism , Plant Diseases
4.
Biomed Pharmacother ; 157: 114087, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36481400

ABSTRACT

BACKGROUND AND OBJECTIVE: Doxorubicin (DOX) is one of the most commonly used antineoplastic agents; however, its considerable nephrotoxicity restricts its clinical use. Kaempferol (KPF), a naturally-occurring flavonoid, possesses various biological benefits, including anti-tumor activity that has garnered increasing attention. This study aimed to evaluate the possible reno-protective role of KPF in DOX nephrotoxicity. METHODS: Male BALB/c mice were injected with DOX via the tail vein to imitate renal damage. Their body and kidney were weighed after 2 weeks of KPF therapy, and urine, serum, and tissue samples were obtained to establish proteinuria, serum creatinine, and pathological alterations. The variations in SOD, GSH, CTA, MDA, and SOD2 expression in renal tissues were measured, and p-ASK1, p-p38, and P-JNK were evaluated by western blot. Cell viability was detected using MTT tests. Apoptosis was assessed by TUNEL, Hoechst 33342, PI staining, and western blot. Fluorescent ROS probes were used to assess oxidative cell damage. RESULTS: KPF ameliorated DOX-induced renal injury, improved proteinuria and renal function, restored GSH content, SOD activity and CTA activity in kidneys, inhibited the overproduction of MDA, and suppressed DOX-induced activation of the MAPK signaling pathway. In NRK-52E cells, KPF significantly inhibited DOX-induced ROS overproduction, restrained the activation of MAPK signaling pathway, and alleviated DOX-induced cell morphological damage and loss of cell viability, While it did not affect the toxicity of DOX to 4T1 cells. CONCLUSION: KPF provides a protective effect against DOX-induced nephrotoxicity while maintaining the cytotoxicity of DOX in breast cancer cells, thereby it may provide a viable solution to lessen renal toxicity in cancer patients receiving DOX.


Subject(s)
Doxorubicin , Kaempferols , Animals , Mice , Male , Doxorubicin/pharmacology , Kaempferols/pharmacology , Kidney , Signal Transduction , Oxidative Stress , Apoptosis
5.
New Phytol ; 236(4): 1358-1374, 2022 11.
Article in English | MEDLINE | ID: mdl-35978547

ABSTRACT

Autophagy is an essential degradation pathway that assists eukaryote survival under multiple stress conditions. Autophagosomes engulfing cargoes accomplish degradation only when they have matured through fusing with lysosomes or vacuoles. However, the molecular machinery mediating autophagosome maturation in plants remains unknown. Using the combined approaches of mass spectrometry, biochemistry, reverse genetics and microscopy, we uncover that UVRAG, a subunit of the class III phosphatidylinositol 3-kinase complexes in Nicotiana benthamiana, plays an essential role in autophagsome maturation via ATG14-assisted recruitment to autophagosomes and by facilitating RAB7 activation. An interaction between N. benthamiana UVRAG and ATG14 was observed in vitro and in vivo, which strikingly differed from their mutually exclusive appearance in different PI3KC3 complexes in yeast and mammals. This interaction increased the localisation of UVRAG on autophagosomes and enabled the convergence of autophagic and late endosomal structures, where they contributed to fusions between these two types of organelles by recruiting the essential membrane fusion factors RAB7 GTPase and the homotypic fusion and protein sorting (HOPS) complex. In addition, we uncovered a joint contribution of ATG14 and UVRAG to geminiviral infection, beyond autophagy. Our study provides insights into the mechanisms of autophagosome maturation in plants and expands the understanding of organisations and roles of the PI3KC3 complexes.


Subject(s)
Autophagosomes , Geminiviridae , Animals , Autophagosomes/metabolism , Geminiviridae/metabolism , Tumor Suppressor Proteins/metabolism , Autophagy/physiology , Class III Phosphatidylinositol 3-Kinases/metabolism , GTP Phosphohydrolases/metabolism , Mammals
6.
EMBO J ; 41(2): e108713, 2022 12 17.
Article in English | MEDLINE | ID: mdl-34888888

ABSTRACT

Vacuolar acidification is essential for vacuoles in diverse physiological functions. However, its role in plant defense, and whether and how pathogens affect vacuolar acidification to promote infection remain unknown. Here, we show that Barley stripe mosaic virus (BSMV) replicase γa, but not its mutant γaR569A , directly blocks acidification of vacuolar lumen and suppresses autophagic degradation to promote viral infection in plants. These were achieved via molecular interaction between γa and V-ATPase catalytic subunit B2 (VHA-B2), leading to disruption of the interaction between VHA-B2 and V-ATPase catalytic subunit E (VHA-E), which impairs the membrane localization of VHA-B2 and suppresses V-ATPase activity. Furthermore, a mutant virus BSMVR569A with the R569A point mutation possesses less viral pathogenicity. Interestingly, multiple viral infections block vacuolar acidification. These findings reveal that functional vacuolar acidification is required for plant antiviral defense and disruption of vacuolar acidification could be a general viral counter-defense strategy employed by multiple viruses.


Subject(s)
Nicotiana/virology , Plant Viruses/pathogenicity , Vacuoles/metabolism , Viral Replicase Complex Proteins/metabolism , Plant Proteins/metabolism , Plant Viruses/physiology , Protein Binding , Vacuolar Proton-Translocating ATPases/metabolism , Vacuoles/virology , Viral Replicase Complex Proteins/chemistry , Virus Replication
7.
New Phytol ; 229(2): 1036-1051, 2021 01.
Article in English | MEDLINE | ID: mdl-32898938

ABSTRACT

In plants, autophagy is involved in responses to viral infection. However, the role of host factors in mediating autophagy to suppress viruses is poorly understood. A previously uncharacterized plant protein, NbP3IP, was shown to interact with p3, an RNA-silencing suppressor protein encoded by Rice stripe virus (RSV), a negative-strand RNA virus. The potential roles of NbP3IP in RSV infection were examined. NbP3IP degraded p3 through the autophagy pathway, thereby affecting the silencing suppression activity of p3. Transgenic overexpression of NbP3IP conferred resistance to RSV infection in Nicotiana benthamiana. RSV infection was promoted in ATG5- or ATG7-silenced plants and was inhibited in GAPC-silenced plants where autophagy was activated, confirming the role of autophagy in suppressing RSV infection. NbP3IP interacted with NbATG8f, indicating a potential selective autophagosomal cargo receptor role for P3IP. Additionally, the rice NbP3IP homolog (OsP3IP) also mediated p3 degradation and interacted with OsATG8b and p3. Through identification of the involvement of P3IP in the autophagy-mediated degradation of RSV p3, we reveal a new mechanism to antagonize the infection of RSV, and thereby provide the first evidence that autophagy can play an antiviral role against negative-strand RNA viruses.


Subject(s)
Oryza , Tenuivirus , Virus Diseases , Autophagy-Related Proteins , Oryza/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Nicotiana
8.
Plant Cell ; 32(4): 1124-1135, 2020 04.
Article in English | MEDLINE | ID: mdl-32051213

ABSTRACT

Autophagy plays an important role in plant-pathogen interactions. Several pathogens including viruses induce autophagy in plants, but the underpinning mechanism remains largely unclear. Furthermore, in virus-plant interactions, viral factor(s) that induce autophagy have yet to be identified. Here, we report that the ßC1 protein of Cotton leaf curl Multan betasatellite (CLCuMuB) interacts with cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC), a negative autophagic regulator, to induce autophagy in Nicotiana benthamiana CLCuMuB ßC1 bound to GAPCs and disrupted the interaction between GAPCs and autophagy-related protein 3 (ATG3). A mutant ßC1 protein (ßC13A) in which I45, Y48, and I53 were all substituted with Ala (A), had a dramatically reduced binding capacity with GAPCs, failed to disrupt the GAPCs-ATG3 interactions and failed to induce autophagy. Furthermore, mutant virus carrying ßC13A showed increased symptoms and viral DNA accumulation associated with decreased autophagy in plants. These results suggest that CLCuMuB ßC1 activates autophagy by disrupting GAPCs-ATG3 interactions.


Subject(s)
Autophagy-Related Proteins/metabolism , Autophagy , Begomovirus/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Nicotiana/metabolism , Nicotiana/virology , Plant Proteins/metabolism , Viral Proteins/metabolism , Protein Binding , Nicotiana/ultrastructure , Vacuoles/metabolism , Vacuoles/ultrastructure
9.
Autophagy ; 15(12): 2126-2141, 2019 12.
Article in English | MEDLINE | ID: mdl-30907219

ABSTRACT

Actin filament, also known as microfilament, is one of two major cytoskeletal elements in plants and plays important roles in various biological processes. Like in animal cells, actin filaments have been thought to participate in autophagy in plants. However, surprisingly, in this study we found that actin filaments are dispensable for the occurrence of autophagy in plants. Disruption of actin filaments by short term treatment with actin polymerization inhibitors, cytochalasin D and latrunculin B, or transient overexpression of Profilin 3 in Nicotiana benthamiana had no effect on basal autophagy as well as the upregulation of nocturnal autophagy and salt stress-induced autophagy. Furthermore, anti-microfilament drug treatment affected neither basal nor salt stress-induced autophagy in Arabidopsis. In addition, prolonged perturbation of actin filaments by silencing Actin7 or 24-h treatment with microfilament-disrupting agents in N. benthamiana caused endoplasmic reticulum (ER) disorganization and subsequent degradation via autophagy involving ATG2, 3, 5, 6 and 7. Our findings reveal that, unlike mammalian cells, actin filaments are unnecessary for bulk autophagy in plants.Abbreviations: ATG: autophagy-related; CD: cytochalasin D; Cvt pathway: cytoplasm to vacuole targeting pathway; DMSO: dimethyl sulfoxide; ER: endoplasmic reticulum; LatB: latrunculin B; Nb: Nicotiana benthamiana; PAS: phagophore assembly site; PRF3: Profilin 3; RER: rough ER; SER: smooth ER; TEM: transmission electron microscopy; TRV: Tobacco rattle virus; VIGS: virus-induced gene silencing; wpi: weeks post-agroinfiltration.


Subject(s)
Actin Cytoskeleton/metabolism , Arabidopsis/metabolism , Autophagy-Related Proteins/metabolism , Autophagy/genetics , Nicotiana/metabolism , Plant Leaves/metabolism , Actin Cytoskeleton/drug effects , Actins/genetics , Actins/metabolism , Arabidopsis/drug effects , Arabidopsis/physiology , Autophagy/drug effects , Autophagy/physiology , Autophagy-Related Proteins/genetics , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Plant Leaves/drug effects , Plant Leaves/enzymology , Plant Leaves/physiology , Plants, Genetically Modified , Profilins/genetics , Profilins/metabolism , Salt Stress/physiology , Time Factors , Nicotiana/drug effects , Nicotiana/physiology
10.
J Integr Plant Biol ; 60(11): 1018-1022, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30252198

ABSTRACT

Nucleolar GTP-binding protein 1 (NOG1) is a highly conserved GTPase first reported in Trypanosoma as required for ribosome biogenesis. We characterized NbNOG1, a Nicotiana benthamiana NOG1 ortholog sharing more than 45% amino acid identity with Trypanosoma, yeast, and human NOG1. N. benthamiana plants silenced for NbNOG1 were stunted and produced sterile flowers. NbNOG1 is functionally interchangeable with yeast NOG1 (ScNOG1), rescuing yeast lethality caused by loss of ScNOG1. Finally, NbNOG1 silencing caused over-accumulation of pre-rRNA processing intermediates, and concomitant loss of mature rRNAs. Collectively, these data support a role for NbNOG1 in ribosomal RNA processing.


Subject(s)
RNA, Ribosomal/genetics , Ribosomes/genetics , Ribosomes/metabolism , Cell Nucleolus/genetics , Gene Silencing/physiology , Humans , Trypanosoma/genetics
11.
Bio Protoc ; 8(20): e3047, 2018 Oct 20.
Article in English | MEDLINE | ID: mdl-34532521

ABSTRACT

In plants, macroautophagy, here referred as autophagy, is a degradation pathway during which the double-membrane structure named autophagosome engulfs the cargo and then fuses with vacuole for material recycling. To investigate the process of autophagy, transmission electron microscopy (TEM) was used to monitor the ultrastructure of autophagic structures and identify the cargo during this process due to its high resolution. Compared to other autophagy examination methods including biochemical assays and confocal microscopy, TEM is the only method that indicates the morphology of autophagic structures in nanoscale, which is considered to be one of the best ways to illustrate the morphology of autophagic intermediates and the substrate of autophagy. Here, we describe the autophagy examination assay using TEM in Nicotianabenthamiana leaf cells.

12.
Elife ; 62017 02 28.
Article in English | MEDLINE | ID: mdl-28244873

ABSTRACT

Autophagy is an evolutionarily conserved process that recycles damaged or unwanted cellular components, and has been linked to plant immunity. However, how autophagy contributes to plant immunity is unknown. Here we reported that the plant autophagic machinery targets the virulence factor ßC1 of Cotton leaf curl Multan virus (CLCuMuV) for degradation through its interaction with the key autophagy protein ATG8. A V32A mutation in ßC1 abolished its interaction with NbATG8f, and virus carrying ßC1V32A showed increased symptoms and viral DNA accumulation in plants. Furthermore, silencing of autophagy-related genes ATG5 and ATG7 reduced plant resistance to the DNA viruses CLCuMuV, Tomato yellow leaf curl virus, and Tomato yellow leaf curl China virus, whereas activating autophagy by silencing GAPC genes enhanced plant resistance to viral infection. Thus, autophagy represents a novel anti-pathogenic mechanism that plays an important role in antiviral immunity in plants.


Subject(s)
Autophagy , Geminiviridae/immunology , Nicotiana/immunology , Nicotiana/virology , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , China , Nicotiana/genetics
13.
Plant Signal Behav ; 11(7): e1201626, 2016 07 02.
Article in English | MEDLINE | ID: mdl-27322929

ABSTRACT

Mounting evidence suggests that microtubules play important roles in several aspects of autophagy in mammalian cells, such as autophagosome biogenesis, autophagosome trafficking and autolysosome formation. However, little research attention has been paid to the engagement of microtubules in plant autophagy. Recently, we reported novel findings in Nicotiana benthamiana that disruption of microtubules reduces autophagosome formation during upregulation of macroautophagy and triggers a specific type of chloroplast autophagy (SEX chlorophagy), which is closely associated with the starch-excess phenotype of leaves. These findings reveal important functional links between microtubules, autophagy and leaf starch degradation in plants.


Subject(s)
Autophagy/physiology , Microtubules/metabolism , Plant Leaves/metabolism , Starch/metabolism , Beclin-1/metabolism , Chloroplasts/metabolism , Nicotiana/metabolism
14.
Autophagy ; 11(12): 2259-74, 2015.
Article in English | MEDLINE | ID: mdl-26566764

ABSTRACT

Microtubules, the major components of cytoskeleton, are involved in various fundamental biological processes in plants. Recent studies in mammalian cells have revealed the importance of microtubule cytoskeleton in autophagy. However, little is known about the roles of microtubules in plant autophagy. Here, we found that ATG6 interacts with TUB8/ß-tubulin 8 and colocalizes with microtubules in Nicotiana benthamiana. Disruption of microtubules by either silencing of tubulin genes or treatment with microtubule-depolymerizing agents in N. benthamiana reduces autophagosome formation during upregulation of nocturnal or oxidation-induced macroautophagy. Furthermore, a blockage of leaf starch degradation occurred in microtubule-disrupted cells and triggered a distinct ATG6-, ATG5- and ATG7-independent autophagic pathway termed starch excess-associated chloroplast autophagy (SEX chlorophagy) for clearance of dysfunctional chloroplasts. Our findings reveal that an intact microtubule network is important for efficient macroautophagy and leaf starch degradation.


Subject(s)
Autophagy/physiology , Chloroplasts/metabolism , Microtubules/metabolism , Starch/metabolism , Tubulin/metabolism , Animals , Arabidopsis/metabolism , Plant Leaves/metabolism
15.
Plant Cell ; 27(4): 1316-31, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25829441

ABSTRACT

Autophagy as a conserved catabolic pathway can respond to reactive oxygen species (ROS) and plays an important role in degrading oxidized proteins in plants under various stress conditions. However, how ROS regulates autophagy in response to oxidative stresses is largely unknown. Here, we show that autophagy-related protein 3 (ATG3) interacts with the cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPCs) to regulate autophagy in Nicotiana benthamiana plants. We found that oxidative stress inhibits the interaction of ATG3 with GAPCs. Silencing of GAPCs significantly activates ATG3-dependent autophagy, while overexpression of GAPCs suppresses autophagy in N. benthamiana plants. Moreover, silencing of GAPCs enhances N gene-mediated cell death and plant resistance against both incompatible pathogens Tobacco mosaic virus and Pseudomonas syringae pv tomato DC3000, as well as compatible pathogen P. syringae pv tabaci. These results indicate that GAPCs have multiple functions in the regulation of autophagy, hypersensitive response, and plant innate immunity.


Subject(s)
Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Nicotiana/metabolism , Plant Diseases/immunology , Plant Proteins/metabolism , Autophagy/physiology , Immunity, Innate/physiology , Plant Diseases/microbiology , Plant Diseases/virology , Protein Binding , Pseudomonas syringae/pathogenicity , Tobacco Mosaic Virus/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...