Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Article in English | MEDLINE | ID: mdl-38981946

ABSTRACT

A human laryngeal model, incorporating all the cartilages and the intrinsic muscles, was reconstructed based on MRI data. The vocal fold was represented as a multilayer structure with detailed inner components. The activation levels of the thyroarytenoid (TA) and cricothyroid (CT) muscles were systematically varied from zero to full activation allowing for the analysis of their interaction and influence on vocal fold dynamics and glottal flow. The finite element method was employed to calculate the vocal fold dynamics, while the one-dimensional Bernoulli equation was utilized to calculate the glottal flow. The analysis was focused on the muscle influence on the fundamental frequency (fo). We found that while CT and TA  activation increased the fo in most of the conditions, TA activation resulted in a frequency drop when it was moderately activated. We show that this frequency drop was associated with the sudden increase of the vertical motion when the vibration transited from involving the whole tissue to mainly in the cover layer. The transition of the vibration pattern was caused by the increased body-cover stiffness ratio that resulted from TA activation.

2.
Small ; : e2402323, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953346

ABSTRACT

Constructing dual-site catalysts consisting of atomically dispersed metal single atoms and metal atomic clusters (MACs) is a promising approach to further boost the catalytic activity for oxygen reduction reaction (ORR). Herein, a porous CoSA-AC@SNC featuring the coexistence of Co single-atom sites (CoN4) and S-coordinated Co atomic clusters (SCo6) in S, N co-doped carbon substrate is successfully synthesized by using porphyrinic metal-organic framework (Co-TPyP MOF) as the precursor. The introduction of the sulfur source creates abundant microstructural defects to anchor Co metal clusters, thus modulating the electronic structure of its surrounding carbon substrate. The synergistic effect between the two types of active sites and structural advantages, in turn, results in high ORR performance of CoSA-AC@SNC with half-wave potential (E1/2) of 0.86 V and Tafel slope of 50.17 mV dec-1. Density functional theory (DFT) calculations also support the synergistic effect between CoN4 and SCo6 by detailing the catalytic mechanism for the improved ORR performance. The as-fabricated Zn-air battery (ZAB) using CoSA-AC@SNC demonstrates impressive peak power density of 174.1 mW cm-2 and charge/discharge durability for 148 h. This work provides a facile synthesis route for dual-site catalysts and can be extended to the development of other efficient atomically dispersed metal-based electrocatalysts.

3.
Nano Lett ; 24(27): 8277-8286, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38949123

ABSTRACT

The controlled vapor-phase synthesis of two-dimensional (2D) transition metal dichalcogenides (TMDs) is essential for functional applications. While chemical vapor deposition (CVD) techniques have been successful for transition metal sulfides, extending these methods to selenides and tellurides often faces challenges due to uncertain roles of hydrogen (H2) in their synthesis. Using CVD growth of MoSe2 as an example, this study illustrates the role of a H2-free environment during temperature ramping in suppressing the reduction of MoO3, which promotes effective vaporization and selenization of the Mo precursor to form MoSe2 monolayers with excellent crystal quality. As-synthesized MoSe2 monolayer-based field-effect transistors show excellent carrier mobility of up to 20.9 cm2/(V·s) with an on-off ratio of 7 × 107. This approach can be extended to other TMDs, such as WSe2, MoTe2, and MoSe2/WSe2 in-plane heterostructures. Our work provides a rational and facile approach to reproducibly synthesize high-quality TMD monolayers, facilitating their translation from laboratory to manufacturing.

4.
J Environ Manage ; 363: 121411, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38861887

ABSTRACT

Rural areas are the main source of ecosystem services in arid and semi-arid areas, and ecosystem services are the background conditions for rural revitalization. In this study, the spatial pattern of key ecosystem services in the countryside was assessed, and the trade-offs and synergistic relationships among ecosystem services were investigated, using the Tacheng-Emin Basin in China as the study area. Finally, the types of ecological function zoning and development strategies for the countryside are proposed. The results showed that: (1) the area of ecological land was large, and the average land use intensity was 2.48, which belonged to the medium intensity. (2) The mean values of the six ecosystem services are all in the middle and lower classes, and the spatial distribution of the five ecosystem services is similar, except for food production. (3) Except for grain production, the other five ecosystem services showed positive feedback to elevation. The other five ecosystem services are synergistic, and there are trade-offs between grain production and other ecosystem services. In the nonlinear interaction mechanism of ecosystem services, the fluctuation constraint occupies the largest proportion. (4) At smaller spatial scales, there are more types of ecosystem service clusters. Combining the results of the study, the villages in the study area can be categorized into five types. This study formulates five priority levels of rural ecological revitalization and proposes different development recommendations for the sustainable development of each type of village. This study is helpful for the fine management of land resources and the revitalization of rural ecology and provides a reference for the sustainable development of ecosystem services in arid and semi-arid areas.


Subject(s)
Conservation of Natural Resources , Ecosystem , China , Ecology
5.
Angew Chem Int Ed Engl ; : e202406332, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781113

ABSTRACT

Clear delineation of tumor margins is essential for accurate resection and decreased recurrence rate in the clinic. Fluorescence imaging is emerging as a promising alternative to traditional visual inspection by surgeons for intraoperative imaging. However, traditional probes lack accuracy in tumor diagnosis, making it difficult to depict tumor boundaries accurately. Herein, we proposed an offensive and defensive integration (ODI) strategy based on the "attack systems (invasive peptidase) and defense systems (reductive microenvironment)" of multi-dimensional tumor characteristics to design activatable fluorescent probes for imaging tumor boundaries precisely. Screened out from a series of ODI strategy-based probes, ANQ performed better than traditional probes based on tumor unilateral correlation by distinguishing between tumor cells and normal cells and minimizing false-positive signals from living metabolic organs. To further improve the signal-to-background ratio in vivo, derivatized FANQ, was prepared and successfully applied to distinguish orthotopic hepatocellular carcinoma tissues from adjacent tissues in mice models and clinical samples. This work highlights an innovative strategy to develop activatable probes for rapid diagnosis of tumors and high-precision imaging of tumor boundaries, providing more efficient tools for future clinical applications in intraoperative assisted resection.

6.
Environ Sci Pollut Res Int ; 31(23): 33993-34009, 2024 May.
Article in English | MEDLINE | ID: mdl-38696011

ABSTRACT

Water contamination by hexavalent chromium (Cr(VI)) seriously jeopardizes human health, which is a pressing environmental concern. Biochar-loaded green-synthesized nZVI, as a green and environmentally friendly material, can efficiently reduce Cr(VI) to Cr(III) while removing Cr(VI) from water. Therefore, in this study, an efficient green-modified biochar material (TP-nZVI/BC) was successfully prepared using tea polyphenol (TP) and sludge biochar (BC) using a low-cost and environmentally friendly green synthesis method. The preparation conditions of TP-nZVI/BC were optimized using response surface methodology (RSM), revealing that the dosage of tea polyphenols plays a crucial role in the removal performance (R2 = 1271.09), followed by reaction time and temperature. The quadratic regression model proved accurate. The optimal preparation conditions are as follows: tea polyphenols (TP) dosage at 48 g/L, reaction temperature at 75 ℃, and a reaction time of 3 h. TP-nZVI/BC removed Cr(VI) from water at a rate 7.6 times greater than BC. The pseudo-second-order kinetic model (R2 = 0.987) accurately describes the adsorption process, suggesting that chemical adsorption predominantly controls the removal process. The adsorption of Cr(VI) by TP-nZVI/BC can be well described by the Langmuir model, and the maximum adsorption capacity reached 105.65 mg/g. FTIR and XPS analyses before and after adsorption demonstrate that nZVI plays a crucial role in the reduction process of Cr(VI), and the synergistic effects of surface adsorption, reduction, and co-precipitation enhance Cr(VI) removal. In summary, using green-modified biochar for Cr(VI) removal is a feasible and promising method with significant potential.


Subject(s)
Charcoal , Chromium , Water Pollutants, Chemical , Charcoal/chemistry , Chromium/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Water Purification/methods , Kinetics , Green Chemistry Technology
7.
J Am Chem Soc ; 146(11): 7198-7203, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38456819

ABSTRACT

A new and efficient synthesis of rubriflordilactone A has been realized. The key transformations include the following: (1) an intramolecular Prins cyclization to establish the seven-membered ring containing two contiguous stereocenters; (2) a Mukaiyama hydration/oxa-Michael cascade to construct the B-ring; and (3) an unprecedented stereocontrol intermolecular o-QM type [4 + 2]-cycloaddition to rapidly assemble core structure of rubriflordilactone A.

8.
Inorg Chem ; 63(9): 4429-4437, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38377564

ABSTRACT

Designing and fabricating efficient and stable nonprecious metal-based oxygen reduction reaction (ORR) electrocatalysts is a pressing and challenging task for the pursuit of sustainable new energy devices. Herein, porous P-CoSe2@NC electrocatalysts with high-density carbon-coated CoSe2 sites were successfully fabricated based on a pyridyl-porphyrinic metal-organic framework (Co-TPyP MOF) via a molten salt-assisted synthesis method. The hierarchical pore and N-doping carbon substrate of P-CoSe2@NC promotes mass transfer and electron-transfer efficiency, which is beneficial to maximize CoSe2 site utilization. Well-designed P-CoSe2@NC exhibits efficient ORR catalytic activity with a high half-wave potential of 0.863 V and excellent catalytic stability. Meanwhile, rechargeable aqueous primary/quasi-solid-state ZABs based on a P-CoSe2@NC air cathode show a high peak power density and exceptional operating stability, catering to the demands of practical applications. The qualified performance and structure stability of the electrocatalytic system may be mainly attributed to the protection of the CoSe2 nanoparticle by the coated carbon layer. Given the rational design of the structure and the component of the electrocatalyst with enhanced ORR activity, we believe that this work has provided a reliable pathway to the development of high-performance transition-metal chalcogenides for energy-storage and -conversion devices.

9.
Nature ; 627(8002): 123-129, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383781

ABSTRACT

Baleen whales (mysticetes) use vocalizations to mediate their complex social and reproductive behaviours in vast, opaque marine environments1. Adapting to an obligate aquatic lifestyle demanded fundamental physiological changes to efficiently produce sound, including laryngeal specializations2-4. Whereas toothed whales (odontocetes) evolved a nasal vocal organ5, mysticetes have been thought to use the larynx for sound production1,6-8. However, there has been no direct demonstration that the mysticete larynx can phonate, or if it does, how it produces the great diversity of mysticete sounds9. Here we combine experiments on the excised larynx of three mysticete species with detailed anatomy and computational models to show that mysticetes evolved unique laryngeal structures for sound production. These structures allow some of the largest animals that ever lived to efficiently produce frequency-modulated, low-frequency calls. Furthermore, we show that this phonation mechanism is likely to be ancestral to all mysticetes and shares its fundamental physical basis with most terrestrial mammals, including humans10, birds11, and their closest relatives, odontocetes5. However, these laryngeal structures set insurmountable physiological limits to the frequency range and depth of their vocalizations, preventing them from escaping anthropogenic vessel noise12,13 and communicating at great depths14, thereby greatly reducing their active communication range.


Subject(s)
Biological Evolution , Whales , Animals , Humans , Whales/physiology , Sound
10.
Environ Res ; 249: 118358, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38325777

ABSTRACT

Increasing the electron-hole recombination rate in g-C3N4 can effectively improve its photocatalytic performance. In this work, NiCoP/g-C3N4 (NCP/PCN) composites with ohmic junction were formed by embedding granular NiCoP in irregularly porous g-C3N4. There was almost no barrier between the metal and the semiconductor in ohmic junction, which made it easier for electrons to slip from PCN to NCP along the curved energy band, and NCP acted as an electron collector to rapidly capture the slipping electrons. In addition, porous g-C3N4 prepared by supramolecular self-assembly could provide a shorter diffusion path for electrons. Thus, the electron-hole was effectively separated and the photocatalytic performance was improved. The band electronic structure and existence of ohmic junction in 7-NCP/PCN composite were demonstrated by XPS, ESR and DFT calculation. Finally, a reasonable photocatalytic degradation mechanism and possible tetracycline degradation path were proposed. This work has significant potential for providing an effective method for the design of non-precious metal photocatalysts.


Subject(s)
Light , Tetracycline , Tetracycline/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Nitrogen Compounds/chemistry , Photochemical Processes , Graphite/chemistry
11.
Materials (Basel) ; 17(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38204105

ABSTRACT

The mechanical properties and failure modes of concrete are controlled by its mesoscopic material composition and structure; therefore, it is necessary to study the deterioration characteristics of tunnel lining concrete under fire from a mesoscopic perspective. However, previous studies mostly analyzed the damage and failure process from a macro-homogeneous perspective, which has certain limitations. In this paper, a thermal-mechanical coupling test device was modified to simulate the state of concrete under tunnel fire conditions. Combined with CT technology, the macroscopic properties and mesoscopic characteristics of concrete were observed. Features were obtained, such as the change in compressive strength under fire, as well as mesoscopic deterioration characteristics. The damage variable D was defined to quantify mesoscopic damage, and the link between mesoscopic deterioration characteristics and macroscopic performance was established, which can be used to predict compressive strength loss through mesoscopic characteristics.

12.
Microsyst Nanoeng ; 10: 11, 2024.
Article in English | MEDLINE | ID: mdl-38261871

ABSTRACT

This paper presents a high-performance MEMS accelerometer with a DC/AC electrostatic stiffness tuning capability based on double-sided parallel plates (DSPPs). DC and AC electrostatic tuning enable the adjustment of the effective stiffness and the calibration of the geometric offset of the proof mass, respectively. A dynamical model of the proposed accelerometer was developed considering both DC/AC electrostatic tuning and the temperature effect. Based on the dynamical model, a self-centering closed loop is proposed for pulling the reference position of the force-to-rebalance (FTR) to the geometric center of DSPP. The self-centering accelerometer operates at the optimal reference position by eliminating the temperature drift of the readout circuit and nulling the net electrostatic tuning forces. The stiffness closed-loop is also incorporated to prevent the pull-in instability of the tuned low-stiffness accelerometer under a dramatic temperature variation. Real-time adjustments of the reference position and the DC tuning voltage are utilized to compensate for the residue temperature drift of the proposed accelerometer. As a result, a novel controlling approach composed of a self-centering closed loop, stiffness-closed loop, and temperature drift compensation is achieved for the accelerometer, realizing a temperature drift coefficient (TDC) of approximately 7 µg/°C and an Allan bias instability of less than 1 µg.

13.
Gene ; 895: 147987, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37972696

ABSTRACT

BACKGROUND: 5-Methylcytosine (m5C) is an mRNA modifier that is associated with the occurrence and development of viral infection, pulmonary fibrosis, lung cancer, and other diseases. However, the role of m5C regulators in chronic obstructive pulmonary disease (COPD) remains unknown. METHODS: In this study, by analysing the GSE42057 dataset, the differential expression of m5c regulators in the COPD group and control group was obtained, and a correlation analysis was conducted. The random forest model and support vector machine model were used to predict the occurrence of COPD. A nomogram model was also constructed to predict the prevalence of COPD. The COPD patients were divided into subtypes by consistent cluster analysis based on m5c methylation regulators. Immune cell infiltration was performed on the m5c methylation subtypes. Differentially expressed genes (DEGs) between m5c methylation subtypes were screened, and the DEGs were analysed by Gene Ontology (GO) Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, we verified the expression of several m5C regulators and related pathways using a COPD cell model. RESULTS: Seven m5c methylation regulators were differentially expressed. The random forest model based on the above genes was the most accurate for predicting the occurrence of COPD. A nomogram model based on the above genes could also accurately predict the prevalence of COPD, and the implementation of these models could benefit COPD patients. The consistent cluster analysis divided the COPD patients into two subtypes (Cluster A and Cluster B). The main component analysis algorithm determined the m5c methylation subtypes and found that patients in Cluster A had a higher m5c score than those in Cluster B. GO analysis of the DEGs between the m5c methylation COPD patient subtypes revealed that DEGS were mainly enriched in leukocyte-mediated immunity and regulation of T-cell activation. KEGG analysis revealed that DEGS were mainly enriched in Th1 and Th2 cell differentiation, neutrophil extracellular trap formation, and the NF-κB signalling pathway. Immunocyte correlation analysis revealed that Cluster B was associated with neutrophil- and macrophage-mediated immunity, while Cluster A was associated with CD4 + T-cell- and CD8 + T-cell-mediated immunity. Cell experiments have also verified some of the above research results. CONCLUSION: The diagnosis and subtype classification of COPD patients based on m5c regulators may provide a new strategy for the diagnosis and treatment of COPD.


Subject(s)
5-Methylcytosine , Algorithms , Humans , CD4-Positive T-Lymphocytes , Cell Differentiation , Cluster Analysis
14.
Chemosphere ; 349: 140931, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38096994

ABSTRACT

Gadolinium is widely applied in medical and high-tech materials because of special magnetic properties. Recovery of gadolinium from waste rare earth products has both economic and environmental value. In this experiment, honeycomb porous composite aerogels were constructed using sericin and sodium alginate mixed with functionally modified carboxymethylated cellulose nanocrystals for the adsorption and separation of gadolinium ions. There were large numbers of carboxyl groups as well as hydroxyl groups on the surface of sodium alginate and filamentous protein, which provided more sites for the adsorption of gadolinium ions. Besides, a stable honeycomb structure appeared on the surface of composite aerogels when the mixture of filamentous protein and sodium alginate was 1:1, which increased the specific surface area of materials to 140.65 m2 g-1. Additionally, the imprinted composite aerogels Ic-CNC/SSA were prepared by virtue of the imprinting technology, enhancing the adsorption selectivity of composite aerogels for gadolinium. The adsorption experiments revealed that the maximum adsorption capacity of Ic-CNC/SSA reached 93.41 mg g-1 at pH 7.0, indicating good selective adsorption of gadolinium ions. In summary, such composite aerogels provide great potential and reference value for the selective adsorption of gadolinium ions in industry.


Subject(s)
Carboxymethylcellulose Sodium , Gadolinium , Gels/chemistry , Carboxymethylcellulose Sodium/chemistry , Adsorption , Porosity , Ions , Alginates
15.
Small ; : e2307587, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38084456

ABSTRACT

2D metal chalcogenides (MCs) have garnered significant attention from both scientific and industrial communities due to their potential in developing next-generation functional devices. Vapor-phase deposition methods have proven highly effective in fabricating high-quality 2D MCs. Nevertheless, the conventionally high thermal budgets required for synthesizing 2D MCs pose limitations, particularly in the integration of multiple components and in specialized applications (such as flexible electronics). To overcome these challenges, it is desirable to reduce the thermal energy requirements, thus facilitating the growth of various 2D MCs at lower temperatures. Numerous endeavors have been undertaken to develop low-temperature vapor-phase growth techniques for 2D MCs, and this review aims to provide an overview of the latest advances in low-temperature vapor-phase growth of 2D MCs. Initially, the review highlights the latest progress in achieving high-quality 2D MCs through various low-temperature vapor-phase techniques, including chemical vapor deposition (CVD), metal-organic CVD, plasma-enhanced CVD, atomic layer deposition (ALD), etc. The strengths and current limitations of these methods are also evaluated. Subsequently, the review consolidates the diverse applications of 2D MCs grown at low temperatures, covering fields such as electronics, optoelectronics, flexible devices, and catalysis. Finally, current challenges and future research directions are briefly discussed, considering the most recent progress in the field.

16.
Molecules ; 28(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38138455

ABSTRACT

In this paper, an ammonia-urea system was developed to induce the shedding of carboxymethylcellulose carbon aerogels to form defects, and the specific surface area of the aerogels was significantly increased after carbonization, and the three-dimensional disordered pore structure of cellulose was preserved. The material showed the selective adsorption of gadolinium ions using the carboxylate active sites provided by carboxymethylation and the microporous or mesoporous structures formed after carbon burning. The successful synthesis of the material was demonstrated by relevant characterization, and the results of static adsorption experiments showed that the material was more consistent with the quasi second-order kinetic model at pH = 5.0. The maximum adsorption capacity was 99.65 mg g-1. The material showed a high adsorption capacity for gadolinium ions in the presence of competing ions and maintained 84.07% of the adsorption performance after five adsorption cycles. The simple use of urea ensured that the cellulose maintained its pore structure, and the specific surface area was greatly increased after carbonization, which provided a feasible direction for the industrial adsorption and recycling of rare-earth elements for reuse.

17.
Environ Sci Pollut Res Int ; 30(60): 125806-125815, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38006485

ABSTRACT

Research on recycling of used rare earth elements has been of great interest. Adsorption is one of the advantageous methods to recover gadolinium with high value. In the process of adsorption and separation of gadolinium from materials, the selectivity of materials for gadolinium can be significantly improved by using ion imprinting technique. However, gadolinium elution process is a traditional pickling process, which may affect the construction of imprinting sites. In this study, bacterial cellulose with three-dimensional spatial structure was used as the base material of aerogel material, and functional materials containing a large number of carboxyl groups were introduced by chemical grafting method. In combination with ion imprinting technology and N-polyacrylamide as intelligent temperature control valve, intelligent imprinting aerogel (PNBC-IIPS) with specific selectivity to gadolinium was prepared. The properties of aerogel materials were analyzed by SEM, FT-IR, and BET characterization. The experimental analysis shows that the desorption of gadolinium can be achieved by controlling the temperature change. The adsorption experiments show that PNBC-IIPS can selectively adsorb gadolinium ions from aqueous solution. The maximum adsorption capacity reached 95.51 mg g-1. Compared with unimprinted aerogel, the maximum adsorption capacity of gadolinium ion is significantly increased, which proves that the introduced ion imprinting technique plays a key role in the adsorption process. Cyclic experiments show that the adsorption capacity of PNBC-IIPS can still maintain 88% of the original adsorption capacity after 5 times of adsorption and desorption. In conclusion, PNBC-IIPS is a green adsorbent for selective recovery of gadolinium ions.


Subject(s)
Cellulose , Wastewater , Cellulose/chemistry , Adsorption , Spectroscopy, Fourier Transform Infrared , Gadolinium , Water
18.
Nature ; 623(7989): 956-963, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38030784

ABSTRACT

Monolayer graphene with nanometre-scale pores, atomically thin thickness and remarkable mechanical properties provides wide-ranging opportunities for applications in ion and molecular separations1, energy storage2 and electronics3. Because the performance of these applications relies heavily on the size of the nanopores, it is desirable to design and engineer with precision a suitable nanopore size with narrow size distributions. However, conventional top-down processes often yield log-normal distributions with long tails, particularly at the sub-nanometre scale4. Moreover, the size distribution and density of the nanopores are often intrinsically intercorrelated, leading to a trade-off between the two that substantially limits their applications5-9. Here we report a cascaded compression approach to narrowing the size distribution of nanopores with left skewness and ultrasmall tail deviation, while keeping the density of nanopores increasing at each compression cycle. The formation of nanopores is split into many small steps, in each of which the size distribution of all the existing nanopores is compressed by a combination of shrinkage and expansion and, at the same time as expansion, a new batch of nanopores is created, leading to increased nanopore density by each cycle. As a result, high-density nanopores in monolayer graphene with a left-skewed, short-tail size distribution are obtained that show ultrafast and ångström-size-tunable selective transport of ions and molecules, breaking the limitation of the conventional log-normal size distribution9,10. This method allows for independent control of several metrics of the generated nanopores, including the density, mean diameter, standard deviation and skewness of the size distribution, which will lead to the next leap in nanotechnology.

19.
Bioengineering (Basel) ; 10(10)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37892945

ABSTRACT

This study used a two-dimensional flow-structure-interaction computer model to investigate the effects of flow-separation-vortex-induced negative pressure on vocal fold vibration and flow dynamics during vocal fold vibration. The study found that negative pressure induced by flow separation vortices enhances vocal fold vibration by increasing aeroelastic energy transfer during vibration. The result showed that the intraglottal pressure was predominantly negative after flow separation before gradually recovering to zero at the glottis exit. When the negative pressure was removed, the vibration amplitude and flow rate were reduced by up to 20%, and the closing speed, flow skewness quotient, and maximum flow declination rate were reduced by up to 40%. The study provides insights into the complex interactions between flow dynamics, vocal fold vibration, and energy transfer during voice production.

20.
Micromachines (Basel) ; 14(8)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37630159

ABSTRACT

This article describes a closed-loop detection MEMS accelerometer for acceleration measurement. This paper analyzes the working principle of MEMS accelerometers in detail and explains the relationship between the accelerometer zero bias, scale factor and voltage reference. Therefore, a combined compensation method is designed via reference voltage source compensation and terminal temperature compensation of the accelerometer, which comprehensively improves the performance over a wide temperature range of the accelerometer. The experiment results show that the initial range is reduced from 3679 ppm to 221 ppm with reference voltage source compensation, zero-bias stability of the accelerometer over temperature is increased by 14.3% on average and the scale factor stability over temperature is increased by 88.2% on average. After combined compensation, one accelerometer zero-bias stability over temperature was reduced to 40 µg and the scale factor stability over temperature was reduced to 16 ppm, the average value of the zero-bias stability over temperature was reduced from 1764 µg to 36 µg, the average value of the scale factor stability over temperature was reduced from 2270 ppm to 25 ppm, the average stability of the zero bias was increased by 97.96% and the average stability of the scale factor was increased by 98.90%.

SELECTION OF CITATIONS
SEARCH DETAIL