Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 614
Filter
1.
Bioelectrochemistry ; 161: 108803, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39241512

ABSTRACT

Nanosecond Pulsed Electric Fields (nsPEFs) treatment has demonstrated anti-tumor effects on various cancer cell lines. However, the use of this treatment in pancreatic cancer is limited. This study demonstrated that nsPEFs treatment effectively suppressed the proliferation and metastasis of pancreatic cancer cells, while also inducing DNA damage. Meanwhile, animal experiments have shown that nsPEFs effectively suppressed the growth of pancreatic cancer, even in cases where the tumor volume exceeded 500-600 mm3 at the initiation of treatment. Notably, a single treatment session was found to significantly inhibit tumor growth, while also showing no adverse effects on the main organs of the mice. RNA sequencing and bioinformatics revealed that seven key genes (CDK1, CENPA, UBE2C, CCNB2, PLK1, CCNA2, and CCNB14) were significantly correlated with the overall survival rate of patients with pancreatic cancer. Through the application of the competing endogenous RNA (ceRNA) hypothesis, two miRNAs (has-let-7b-5p and hsa-miR-193b-3p) and four lncRNAs (MIR4435-2HG, ZNF436-AS1, LINC01089, and MIR4435-2HG) were identified as significantly impacting the overall survival of pancreatic cancer patients. We have effectively developed an mRNA-miRNA-lncRNA network that has the potential to stimulate further investigation into the underlying mechanisms of nsPEFs on pancreatic cancer.

2.
World J Diabetes ; 15(7): 1477-1488, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39099806

ABSTRACT

BACKGROUND: The glycemic control of children with type 1 diabetes (T1D) may be influenced by the economic status of their parents. AIM: To investigate the association between parental economic status and blood glucose levels of children with T1D using a mobile health application. METHODS: Data from children with T1D in China's largest T1D online community, Tang-TangQuan®. Blood glucose levels were uploaded every three months and parental economic status was evaluated based on annual household income. Children were divided into three groups: Low-income (< 30000 Yuan), middle-income (30000-100000 Yuan), and high-income (> 100000 yuan) (1 Yuan = 0.145 United States Dollar approximately). Blood glucose levels were compared among the groups and associations were explored using Spearman's correlation analysis and multivariable logistic regression. RESULTS: From September 2015 to August 2022, 1406 eligible children with T1D were included (779 female, 55.4%). Median age was 8.1 years (Q1-Q3: 4.6-11.6) and duration of T1D was 0.06 years (0.02-0.44). Participants were divided into three groups: Low-income (n = 320), middle-income (n = 724), and high-income (n = 362). Baseline hemoglobin A1c (HbA1c) levels were comparable among the three groups (P = 0.072). However, at month 36, the low-income group had the highest HbA1c levels (P = 0.036). Within three years after registration, glucose levels increased significantly in the low-income group but not in the middle-income and high-income groups. Parental economic status was negatively correlated with pre-dinner glucose (r = -0.272, P = 0.012). After adjustment for confounders, parental economic status remained a significant factor related to pre-dinner glucose levels (odds ratio = 13.02, 95%CI: 1.99 to 126.05, P = 0.002). CONCLUSION: The blood glucose levels of children with T1D were negatively associated with parental economic status. It is suggested that parental economic status should be taken into consideration in the management of T1D for children.

3.
Ann Surg Oncol ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190094

ABSTRACT

BACKGROUND: Neoadjuvant immunotherapy using immune checkpoint inhibitors (ICIs) has revolutionized the treatment of early stage non-small cell lung cancer (NSCLC). However, little is known about which patients are likely to benefit most from neoadjuvant immunotherapy. In this study, we performed a multiplatform analysis on samples from resectable NSCLC treated with neoadjuvant immunotherapy to explore molecular characteristics related to immune responses. PATIENTS AND METHODS: A total of 17 patients with resectable stage IB-IIIA NSCLC treated with neoadjuvant immunotherapy were included. A multiplex cytokine assay, bulk TCR sequencing in peripheral blood, and multiplexed immunohistochemistry were performed. RESULTS: Low levels of stromal cell-derived factor (SDF)-1alpha at baseline were associated with unfavorable disease-free survival (DFS). Patients with major pathologic response (MPR) showed a decrease in HGF after one cycle of neoadjuvant immunotherapy. An increase in IDO and IP-10 was observed in patients who developed immune-related adverse events (irAEs) after neoadjuvant immunotherapy. There were no correlations between irAEs and MPR or DFS. The MPR group presented a significant decrease in white blood cells and neutrophil count after neoadjuvant immunotherapy. The high peripheral baseline TCR convergence was correlated with MPR and favorable DFS in lung squamous cell carcinoma (LUSC) receiving neoadjuvant immunotherapy. Neoadjuvant immunotherapy led to a significant increase in CD4+, CD8+, and CD8+CD39+ T-cell infiltration in tumor areas. CONCLUSIONS: This study suggests the potential roles of cytokines and TCR convergence for predicting ICIs response in resectable NSCLC and LUSC. CD8+CD39+T cells and CD4+ T cells could be involved in the action of neoadjuvant immunotherapy.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124890, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39098295

ABSTRACT

Porphyrins are widely used as potential nonlinear optical (NLO) materials because of their highly delocalized π electrons and feasible synthesis and functionalization with broad biological applications. A variety of linear and cyclic porphyrin derivatives have been synthesized, and the correlation between their structures and NLO properties awaits being disclosed. In this work, the electronic structures and third-order NLO properties of linear and cyclic butadiyne-linked zinc porphyrin oligomers have been studied by quantum chemical methods and sum-over-states model. The static second hyperpolarizability (<γ0>) increases exponentially with the number of zinc porphyrin units ([<γ0>n] = 0.67[<γ0>1]n2.63, n = 2 âˆ¼ 6) in linear π-conjugated oligomers, and the <γ0> of the linear hexamer is about 74 times that of the monomer. Such enhancement of <γ0> in linear oligomers originates from closely-lying frontier molecular orbitals available for low energy electron excitations and strong charge transfer-based excitations across porphyrins. The <γ0>s of cyclic porphyrins are lower than that of the linear hexamer, though the interaction between the ring and the ligand enhances the <γ0> of some cyclic zinc porphyrin complexes. The large two-photon absorption cross sections confer on these zinc porphyrin derivatives excellent candidates for two-photon absorption applications.

5.
World J Diabetes ; 15(8): 1742-1752, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39192859

ABSTRACT

BACKGROUND: Recent research has underscored the potentially protective role of dietary antioxidants against chronic conditions, such as cardiovascular diseases and stroke. The composite dietary antioxidant index (CDAI), which reflects the overall intake of key dietary antioxidants, has been identified as a crucial metric for exploring this relationship. Although previous research has shown a negative correlation between CDAI levels and stroke risk in prediabetic individuals, there remains a substantial gap in understanding this association among individuals with dia-betes, who are at an inherently greater risk for cerebrovascular events. AIM: To investigate the association between CDAI and stroke risk in individuals with diabetes. METHODS: Using a cross-sectional study design, this investigation analyzed data from the National Health and Nutrition Examination Survey spanning from 2003 to 2018 that included 6735 participants aged over 20 years with diabetes. The CDAI was calculated from 24-h dietary recalls to assess intake of key antioxidants: Vitamins A, C, and E; carotenoids; selenium; and zinc. Multivariate logistic regression and restricted cubic spline analysis were used to rigorously examine the relationship between CDAI and stroke risk. RESULTS: The participant cohort, with an average age of 59.5 years and a slight male majority, reflected the broader demographic characteristics of individuals with diabetes. The analysis revealed a strong inverse relationship between CDAI levels and stroke risk. Remarkably, those in the highest quintile of CDAI demonstrated a 43% lower prevalence of stroke compared to those in the lowest quintile, even after adjustments for various confounders. This finding not only highlights the negative association between CDAI and stroke risk but also underscores the significant potential of antioxidant-rich diets in reducing stroke prevalence among patients with diabetes. CONCLUSION: Our findings suggested that CDAI was inversely associated with stroke prevalence among patients with diabetes. These results suggest incorporating antioxidant-rich foods into dietary regimens as a potential strategy for stroke prevention.

6.
Chem Commun (Camb) ; 60(70): 9420-9423, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39136247

ABSTRACT

A hydrophobic evaporable indano[60] fullerene ketone with low sublimation temperature (CF3-FIDO) was successfully synthesized, providing the fullerene mono-adduct derivative with the lowest sublimation temperature reported to date. The amorphous characteristic of the evaporated film was confirmed by grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). Perovskite solar cells using CF3-FIDO as the electron transport layer (ETL) achieved long-term device stability retaining 60% of their initial PCE after 500 h in air.

7.
Lung Cancer ; 195: 107933, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39191079

ABSTRACT

OBJECTIVES: Non-small cell lung cancer (NSCLC) patients with exon 20 insertion mutations (ex20ins) of the epidermal growth factor receptor (EGFR) were resistant to monotherapy of immune checkpoint inhibitor (ICI). However, recent reports have shown that the combination of ICI and chemotherapy (ICI-combined regimen) exhibited certain efficacy for NSCLC with EGFR ex20ins. The mechanisms behind this phenomenon have not been thoroughly clarified. Hence, we conducted this study tofind correlations between the tumor immune microenvironment of EGFR ex20ins and the efficacy of ICI-combined regimen. METHODS: We performed single-cell transcriptome sequencing and multiplex immunofluorescence staining (mIF) to investigate the immune microenvironment of NSCLC patients with EGFR ex20ins, L858R, and EGFR wild-type. We analyzed 15 treatment-naïve NSCLC samples utilizing single-cell RNA sequencing (scRNA-seq). Another 30 cases of EGFR L858R and 4 cases of wild-type were recruited to compare the immune microenvironment with that of EGFR ex20ins (28 cases) by mIF. RESULTS: We observed that cell components, function and interactions varied between EGFR ex20ins, L858R, and wild-type NSCLC.We discovered similar T cell and CD8+ T cell distributions among groups but found noninferior or even better T cell activation in ex20ins patients. Infiltrating CD8+ FOXP3- T cells were significantly lower in the tumor region of EGFR ex20ins compared to wild-type. T cells from the ex20ins group had a greater tendency to promote cancer cell inflammation and epithelial-mesenchymal transition (EMT) compared to wild-type group. For macrophages, there were more M2-like macrophages in ex20ins patients. M1-like macrophages in ex20ins group produced fewer antitumor cytokines than in other groups. CONCLUSIONS: The immune microenvironment of EGFR ex20ins is more suppressive than that of L858R and wild-type, suggesting that ICI monotherapy may not be sufficient for these patients. ICI-combined regimen might be a treatment option for EGFR ex20ins due to tumor-promoting inflammation and noninferior T cell functions in the immune microenvironment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Exons , Immune Checkpoint Inhibitors , Lung Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/immunology , ErbB Receptors/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Immune Checkpoint Inhibitors/therapeutic use , Exons/genetics , Male , Female , Middle Aged , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Mutagenesis, Insertional , Prognosis
8.
Front Cardiovasc Med ; 11: 1370736, 2024.
Article in English | MEDLINE | ID: mdl-38966752

ABSTRACT

Rothia dentocariosa is a conditionally pathogenic bacterium that may cause infective endocarditis (IE) in selected patients and give rise to a variety of clinical complications, albeit it is not a common IE pathogen. We present the case of a patient diagnosed with Rothia dentocariosa-associated IE secondary to influenza B and thrombocytopenic purpura. The blood culture revealed Rochebacterium caries, cardiac ultrasound detected vegetation, while brain and spleen abscesses manifested and progressively deteriorated. Despite a suboptimal response to anti-infective therapy, the patient ultimately underwent aortic valve replacement. Discharge from the hospital was achieved upon control of the brain abscess and spleen abscess.

9.
Article in English | MEDLINE | ID: mdl-38965748

ABSTRACT

OBJECTIVE: To investigate the role of the microRNA (miRNA)-669f-5p/deoxycytidylate deaminase (Dctd) axis in sevoflurane inducing cognitive dysfunction in aged mice. METHODS: Sixty-six C57BL/6J mice were used in the experiment model and were randomly divided into the sevoflurane group and the control group. The mice in the sevoflurane group were anesthetised with 3.4% sevoflurane, whereas those in the control group were air-treated for the same period. The study was then performed using bioinformatics sequencing, as well as in vitro and in vivo validation. RESULTS: The mice in the sevoflurane group showed significant cognitive impairments in terms of a decrease in both spatial learning and memory abilities. Experimental doses of miR-669f-5p agonist exhibited no obvious effect on cognitive function following sevoflurane inhalation, but inhibiting the expression of miR-669f-5p could alleviate the impairments. Based on the results of the bioinformatics sequencing, miR-669f-5p/Dctd and the toll-like receptor (TLR) signalling pathway could be the key miRNA, gene and pathway leading to postoperative cognitive dysfunction following sevoflurane inhalation. The aged mice showed significantly increased expression of miR-669f-5p in the hippocampus following sevoflurane inhalation, and upregulating/inhibiting its expression could increase/decrease TLR expression in the hippocampus. Furthermore, miR-669f-5p could reduce the expression of the Dctd gene by binding to its 3'untranslated region. CONCLUSION: The miR-669f-5p/Dctd axis plays an important role in sevoflurane inducing cognitive dysfunction in aged mice, providing a new direction for further development of therapeutic strategies concerning the prevention and treatment of cognitive dysfunction associated with sevoflurane anaesthesia.

10.
ERJ Open Res ; 10(4)2024 Jul.
Article in English | MEDLINE | ID: mdl-38957167

ABSTRACT

Background: Few studies have compared the associations between long-term exposures to particulate matters (aerodynamic diameter ≤1, ≤2.5 and ≤10 µm: PM1, PM2.5 and PM10, respectively) and asthma and asthma-related respiratory symptoms. The objective of the present study was to compare the strength of the aforementioned associations in middle-aged and elderly adults. Methods: We calculated the mean 722-day personal exposure estimates of PM1, PM2.5 and PM10 at 1 km×1 km spatial resolution between 2013 and 2019 at individual levels from China High Air Pollutants (CHAP) datasets. Using logistic regression models, we presented the associations as odds ratios and 95% confidence intervals, for each interquartile range (IQR) increase in PM1/PM2.5/PM10 concentration. Asthma denoted a self-reported history of physician-diagnosed asthma or wheezing in the preceding 12 months. Results: We included 7371 participants in COPD surveillance from Guangdong, China. Each IQR increase in PM1, PM2.5 and PM10 was associated with a greater odds (OR (95% CI)) of asthma (PM1: 1.22 (1.02-1.45); PM2.5: 1.24 (1.04-1.48); PM10: 1.30 (1.07-1.57)), wheeze (PM1: 1.27 (1.11-1.44); PM2.5: 1.30 (1.14-1.48); PM10: 1.34 (1.17-1.55)), persistent cough (PM1: 1.33 (1.06-1.66); PM2.5: 1.36 (1.09-1.71); PM10: 1.31 (1.02-1.68)) and dyspnoea (PM1: 2.10 (1.84-2.41); PM2.5: 2.17 (1.90-2.48); PM10: 2.29 (1.96-2.66)). Sensitivity analysis results were robust after excluding individuals with a family history of allergy. Associations of PM1, PM2.5 and PM10 with asthma and asthma-related respiratory symptoms were slightly stronger in males. Conclusion: Long-term exposure to PM is associated with increased risks of asthma and asthma-related respiratory symptoms.

11.
Huan Jing Ke Xue ; 45(6): 3533-3542, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897773

ABSTRACT

The form of soil nitrogen input significantly affects soil CO2 emission. As a new form of nitrogen input, biochar-loaded ammonia nitrogen not only reduces the input of chemical nitrogen fertilizer in farmland but also reduces the cost of environmental treatment. It is of great significance to promote the zero growth of national chemical fertilizer, the prevention and control of farmland non-point source pollution, and the realization of the national goal of "carbon peak" and "carbon neutralization." Through an indoor culture experiment, the effects of different nitrogen input forms on soil carbon emission, enzyme activity, and microbial community were studied through four treatments:no fertilization (CK), single application of chemical nitrogen fertilizer (CF), biochar combined application of chemical nitrogen fertilizer (BF), and biochar-loaded ammonia nitrogen (BN). The results showed that compared with that in CF, BF significantly increased cumulative carbon emissions (66.24 %), whereas BN had no significant difference. It is worth noting that the cumulative carbon emissions were significantly reduced by 35.28 % compared with that in BF and BN. Compared with those in CF and BF, the activities of ß-glucosidase, peroxidase, and polyphenol oxidase treated with BN significantly increased by 20.25 % and 5.20 %, respectively. Compared with that in CF, the BF treatment increased microbial community richness and community diversity, whereas the BN treatment decreased microbial community richness. Compared with that in BF, the relative abundance of Proteobacteria decreased by 11.16 %, and the relative abundance of Actinobacteria and Bacteroidota increased by 8.12 % and 5.83 %, respectively, in which xylosidase activity was the most important soil factor affecting microbial community structure. The relative abundance of Chloroflexi was significantly correlated with cellobiose hydrolase activity, and the relative abundance of Gemmatimonadetes was significantly correlated with ß-glucosidase activity. There was a very significant correlation between the relative abundance of Proteobacteria and cumulative carbon emissions. To summarize, compared with those under biochar combined with chemical nitrogen fertilizer, biochar loaded with ammonia nitrogen significantly reduced cumulative carbon emissions, and its emission reduction effect was better. The results of this study will be beneficial to the landing of the national "double carbon strategy," the healthy development of the biological natural gas industry, the construction of the national green cultivation circular agriculture system, and the realization of the national zero growth strategy of chemical fertilizer.


Subject(s)
Ammonia , Carbon , Charcoal , Fertilizers , Nitrogen , Soil Microbiology , Soil , Charcoal/chemistry , Soil/chemistry , Microbiota/drug effects , Bacteria/classification , Bacteria/growth & development , Bacteria/drug effects , Carbon Dioxide/analysis
12.
Gene ; 921: 148527, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38710293

ABSTRACT

The E6 protein is a known oncogene in cervical cancer and plays a key role in the development and progression of cervical cancer by reducing the expression level of the tumor suppressor protein P53 and ultimately leading to enhanced cell proliferation and reduced apoptosis. Therefore, antiviral agents that inhibit the expression of E6 oncoprotein are expected to be potential therapies for human cervical cancer. Here we developed CRISPR/Cas13a: crRNA dual plasmid system and demonstrated that CRISPR/Cas13a could effectively and specifically knock down human papillomavirus 18 E6 mRNA, downregulate the expression level of E6 protein, and restore the expression of the tumor suppressor gene P53 protein, thereby inhibiting the growth of cervical cancer cells and increasing their apoptosis, the E6-2, E6-3, and E6-5 groups resulted in apoptosis rates of 25.4%, 22.4%, and 22.2% in HeLa cells. Moreover, CRISPR/Cas13a enhances the proliferation inhibition and apoptosis induction of cisplatin in cervical cancer HeLa cells. The CRISPR/Cas13a system targeting HPV E6 mRNA may be a promising therapeutic approach for the treatment of human papillomavirus-associated cervical cancer.


Subject(s)
Apoptosis , CRISPR-Cas Systems , Cell Proliferation , Human papillomavirus 18 , Oncogene Proteins, Viral , Uterine Cervical Neoplasms , Humans , HeLa Cells , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Female , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/genetics , Apoptosis/genetics , Cell Proliferation/genetics , Human papillomavirus 18/genetics , Human papillomavirus 18/pathogenicity , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Papillomavirus Infections/genetics , Papillomavirus Infections/virology , Cisplatin/pharmacology , DNA-Binding Proteins
13.
J Phys Chem Lett ; 15(19): 5150-5158, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38712816

ABSTRACT

Intrinsic boundaries formed by grain stacks of randomly oriented perovskite crystallites seriously restrict charge transport in the resultant photovoltaic devices, whereas direct passivation of these defects remains unexplored, and it is desirable to modulate perovskite growth with uniform orientation. Herein, we report a simple but effective method to regulate perovskite crystallization by employing a volatile and polymerizable monomer of hydroxyethyl methacrylate (HEMA), which can simultaneously interact with both FA+ and Pb2+ via hydrogen and coordination bonding, respectively, to seed perovskite crystallization with accelerated nucleation and retarded crystal growth. Upon thermal annealing, the gradual volatilization and partial self-condensation of the HEMA drive the perovskite growth perpendicularly to the substrate, leading to largely suppressed defect states, improved crystallinity, and a reduced Young's modulus of the perovskite film. As a result, champion efficiencies exceeding 24 and 22% with improved operational and mechanical stability of the optimized perovskite solar cells based on rigid and flexible substrates were finally achieved.

14.
Open Med (Wars) ; 19(1): 20240921, 2024.
Article in English | MEDLINE | ID: mdl-38584848

ABSTRACT

The limitations of conventional urine culture methods can be avoided by using culture-independent approaches like polymerase chain reaction (PCR) and next-generation sequencing (NGS). However, the efficacy of these approaches in this setting is still subject to contention. PRISMA-compliant searches were performed on MEDLINE/PubMed, EMBASE, Web of Sciences, and the Cochrane Database until March 2023. The included articles compared PCR or NGS to conventional urine culture for the detection of urinary tract infections (UTIs). RevMan performed meta-analysis, and the Cochrane Risk of Bias Assessment Tool assessed study quality. A total of 10 selected studies that involved 1,291 individuals were included in this meta-analysis. The study found that PCR has a 99% sensitivity and a 94% specificity for diagnosing UTIs. Furthermore, NGS was shown to have a sensitivity of 90% for identifying UTIs and a specificity of 86%. The odds ratio (OR) for PCR to detect Gram-positive bacteria is 0.50 (95% confidence interval [CI] 0.41-0.61), while the OR for NGS to detect Gram-negative bacteria is 0.23 [95% CI 0.09-0.59]. UTIs are typically caused by Gram-negative bacteria like Escherichia coli and Gram-positive bacteria like Staphylococci and Streptococci. PCR and NGS are reliable, culture-free molecular diagnostic methods that, despite being expensive, are essential for UTI diagnosis and prevention due to their high sensitivity and specificity.

15.
Eur J Med Res ; 29(1): 240, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38641655

ABSTRACT

BACKGROUND: Immunological liver injury (ILI) is a common liver disease associated with the microbiota-gut-liver axis. Jian Gan powder (JGP) exhibits both protective and therapeutic effects on hepatitis virus-induced ILI in the clinic. However, the underlying mechanisms remain elusive. The aim of this study is to investigate the hepatoprotective effects and associated mechanisms of JGP in the context of gut microbiota, utilizing a mouse model of ILI. METHODS: The mouse model was established employing Bacillus Calmette-Guérin (BCG) plus lipopolysaccharide (LPS). Following treatment with JGP (7.5, 15, or 30 g/kg), serum, liver, and fresh fecal samples were analyzed. 16S rRNA gene sequencing and untargeted metabolomics profiling were performed to assess the role of JGP on the gut microbiota and its metabolites. RESULTS: JGP treatment markedly reduced serum IFN-γ, IL-6, IL-22, and hepatic p-STAT3 (phosphorylated transducer and activator of transcription-3) expression. In contrast, JGP increased the percentage of proliferating cell nuclear antigen-positive liver cells in treated mice. Fecal 16S rRNA gene sequencing revealed that JGP treatment restored the levels of Alloprevotella, Burkholderia-Caballeronia-Paraburkholderia, Muribaculum, Streptococcus, and Stenotrophomonas. Additionally, metabolomics analysis of fecal samples showed that JGP restored the levels of allylestrenol, eplerenone, phosphatidylethanolamine (PE) (P-20:0/0:0), sphingomyelin (SM) d27:1, soyasapogenol C, chrysin, and soyasaponin I. CONCLUSIONS: JGP intervention improves ILI by restoring gut microbiota and modifying its metabolic profiles. These results provide a novel insight into the mechanism of JGP in treating ILI and the scientific basis to support its clinical application.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Gastrointestinal Microbiome/genetics , Powders/metabolism , Powders/pharmacology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/metabolism , Liver/metabolism , Metabolome
16.
PLoS One ; 19(4): e0301990, 2024.
Article in English | MEDLINE | ID: mdl-38625851

ABSTRACT

Cardiac remodeling is the primary pathological feature of chronic heart failure (HF). Exploring the characteristics of cardiac remodeling in the very early stages of HF and identifying targets for intervention are essential for discovering novel mechanisms and therapeutic strategies. Silent mating type information regulation 2 homolog 3 (SIRT3), as a major mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, is required for mitochondrial metabolism. However, whether SIRT3 plays a role in cardiac remodeling by regulating the biosynthesis of mitochondrial cardiolipin (CL) is unknown. In this study, we induced pressure overload in wild-type (WT) and SIRT3 knockout (SIRT3-/-) mice via transverse aortic constriction (TAC). Compared with WT mouse hearts, the hearts of SIRT3-/- mice exhibited more-pronounced cardiac remodeling and fibrosis, greater reactive oxygen species (ROS) production, decreased mitochondrial-membrane potential (ΔΨm), and abnormal mitochondrial morphology after TAC. Furthermore, SIRT3 deletion aggravated TAC-induced decrease in total CL content, which might be associated with the downregulation of the CL synthesis related enzymes cardiolipin synthase 1 (CRLS1) and phospholipid-lysophospholipid transacylase (TAFAZZIN). In our in vitro experiments, SIRT3 overexpression prevented angiotensin II (AngII)- induced aberrant mitochondrial function, CL biosynthesis disorder, and peroxisome proliferator-activated receptor gamma (PPARγ) downregulation in cardiomyocytes; meanwhile, SIRT3 knockdown exacerbated these effects. Moreover, the addition of GW9662, a PPARγ antagonist, partially counteracted the beneficial effects of SIRT3 overexpression. In conclusion, SIRT3 regulated PPARγ-mediated CL biosynthesis, maintained the structure and function of mitochondria, and thereby protected the myocardium against cardiac remodeling.


Subject(s)
Cardiolipins , Sirtuin 3 , Animals , Mice , Cardiolipins/metabolism , Mice, Knockout , Myocytes, Cardiac/metabolism , PPAR gamma/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism , Ventricular Remodeling
17.
Metabolites ; 14(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38668352

ABSTRACT

Temperature is vital in plant growth and agricultural fruit production. Litchi chinensis Sonn, commonly known as litchi, is appreciated for its delicious fruit and fragrant blossoms and is susceptible to stress when exposed to low temperatures. This study investigates the effect of two cryoprotectants that counteract cold stress during litchi flowering, identifies the genes that generate the cold resistance induced by the treatments, and hypothesizes the roles of these genes in cold resistance. Whole plants were treated with Bihu and Liangli cryoprotectant solutions to protect inflorescences below 10 °C. The soluble protein, sugar, fructose, sucrose, glucose, and proline contents were measured during inflorescence. Sucrose synthetase, sucrose phosphate synthetase, antioxidant enzymes (SOD, POD, CAT), and MDA were also monitored throughout the flowering stage. Differentially expressed genes (DEGs), gene ontology, and associated KEGG pathways in the transcriptomics study were investigated. There were 1243 DEGs expressed after Bihu treatment and 1340 in the control samples. Signal transduction pathways were associated with 39 genes in the control group and 43 genes in the Bihu treatment group. The discovery of these genes may contribute to further research on cold resistance mechanisms in litchi. The Bihu treatment was related to 422 low-temperature-sensitive differentially accumulated metabolites (DAMs), as opposed to 408 DAMs in the control, mostly associated with lipid metabolism, organic oxidants, and alcohols. Among them, the most significant differentially accumulated metabolites were involved in pathways such as ß-alanine metabolism, polycyclic aromatic hydrocarbon biosynthesis, linoleic acid metabolism, and histidine metabolism. These results showed that Bihu treatment could potentially promote these favorable traits and increase fruit productivity compared to the Liangli and control treatments. More genomic research into cold stress is needed to support the findings of this study.

18.
Nat Commun ; 15(1): 2845, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565859

ABSTRACT

Near-infrared-I/II fluorescent proteins (NIR-I/II FPs) are crucial for in vivo imaging, yet the current NIR-I/II FPs face challenges including scarcity, the requirement for chromophore maturation, and limited emission wavelengths (typically < 800 nm). Here, we utilize synthetic protein-seeking NIR-II dyes as chromophores, which covalently bind to tag proteins (e.g., human serum albumin, HSA) through a site-specific nucleophilic substitution reaction, thereby creating proof-of-concept biomimetic NIR-II FPs. This chemogenic protein-seeking strategy can be accomplished under gentle physiological conditions without catalysis. Proteomics analysis identifies specific binding site (Cys 477 on DIII). NIR-II FPs significantly enhance chromophore brightness and photostability, while improving biocompatibility, allowing for high-performance NIR-II lymphography and angiography. This strategy is universal and applicable in creating a wide range of spectrally separated NIR-I/II FPs for real-time visualization of multiple biological events. Overall, this straightforward biomimetic approach holds the potential to transform fluorescent protein-based bioimaging and enables in-situ albumin targeting to create NIR-I/II FPs for deep-tissue imaging in live organisms.


Subject(s)
Biomimetics , Coloring Agents , Humans , Luminescent Proteins/metabolism , Diagnostic Imaging , Bacterial Proteins/metabolism , Fluorescent Dyes , Optical Imaging/methods
19.
Bioresour Technol ; 402: 130754, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685518

ABSTRACT

Microbial electrosynthesis (MES) is an innovative technology that employs microbes to synthesize chemicals by reducing CO2. A comprehensive understanding of cathodic extracellular electron transfer (CEET) is essential for the advancement of this technology. This study explores the impact of different cathodic potentials on CEET and its response to introduction of hydrogen evolution materials (Pt@C). Without the addition of Pt@C, H2-mediated CEET contributed up to 94.4 % at -1.05 V. With the addition of Pt@C, H2-mediated CEET contributions were 76.6 % (-1.05 V) and 19.9 % (-0.85 V), respectively. BRH-c20a was enriched as the dominated microbe (>80 %), and its relative abundance was largely affected by the addition of Pt@C NPs. This study highlights the tunability of MES performance through cathodic potential control and the addition of metal nanoparticles.


Subject(s)
Electrodes , Hydrogen , Platinum , Platinum/chemistry , Electron Transport , Hydrogen/metabolism , Bioelectric Energy Sources , Carbon/pharmacology , Metal Nanoparticles/chemistry , Extracellular Space/chemistry , Extracellular Space/metabolism , Electrons
20.
Phys Chem Chem Phys ; 26(11): 9074, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38439689

ABSTRACT

Correction for 'Ionic migration induced loss analysis of perovskite solar cells: a poling study' by Xue Zheng et al., Phys. Chem. Chem. Phys., 2022, 24, 7805-7814, https://doi.org/10.1039/D1CP05450C.

SELECTION OF CITATIONS
SEARCH DETAIL