Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Article in English | MEDLINE | ID: mdl-38438592

ABSTRACT

Clinical studies have shown that the mediodorsal thalamus (MD) may play an important role in the development of depression. However, the molecular and circuit mechanisms by which the mediodorsal thalamus (MD) participates in the pathological processes of depression remain unclear. Here, we show that in male chronic social defeat stress (CSDS) mice, the calcium signaling activity of glutamatergic neurons in MD is reduced. By combining conventional neurotracer and transneuronal virus tracing techniques, we identify a synaptic circuit connecting MD and medial prefrontal cortex (mPFC) in the mouse. Brain slice electrophysiology and fiber optic recordings reveal that the reduced activity of MD glutamatergic neurons leads to an excitatory-inhibitory imbalance of pyramidal neurons in mPFC. Furthermore, activation of MD glutamatergic neurons restores the electrophysiological properties abnormal in mPFC. Optogenetic activation of the MD-mPFC circuit ameliorates anxiety and depression-like behaviors in CSDS mice. Taken together, these data support the critical role of MD-mPFC circuit on CSDS-induced depression-like behavior and provide a potential mechanistic explanation for depression.

2.
BMC Cancer ; 24(1): 321, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454345

ABSTRACT

BACKGROUND: Definitive concurrent chemoradiotherapy (dCCRT) is the gold standard for the treatment of locally advanced esophageal squamous cell carcinoma (ESCC). However, the potential benefits of consolidation chemotherapy after dCCRT in patients with esophageal cancer remain debatable. Prospective randomized controlled trials comparing the outcomes of dCCRT with or without consolidation chemotherapy in patients with ESCC are lacking. In this study, we aim to generate evidence regarding consolidation chemotherapy efficacy in patients with locally advanced, inoperable ESCC. METHODS: This is a multicenter, prospective, open-label, phase-III randomized controlled trial comparing non-inferiority of dCCRT alone to consolidation chemotherapy following dCCRT. In total, 600 patients will be enrolled and randomly assigned in a 1:1 ratio to receive either consolidation chemotherapy after dCCRT (Arm A) or dCCRT alone (Arm B). Overall survival will be the primary endpoint, whereas progression-free survival, locoregional progression-free survival, distant metastasis-free survival, and treatment-related toxicity will be the secondary endpoints. DISCUSSION: This study aid in further understanding the effects of consolidation chemotherapy after dCCRT in patients with locally advanced, inoperable ESCC. TRIAL REGISTRATION: ChiCTR1800017646.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Chemoradiotherapy , Consolidation Chemotherapy , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/radiotherapy , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/pathology , Prospective Studies , Randomized Controlled Trials as Topic , Multicenter Studies as Topic , Clinical Trials, Phase III as Topic , Equivalence Trials as Topic
3.
Heliyon ; 10(6): e27637, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38510046

ABSTRACT

Introduction: The typical functionality of astrocytes was previously shown to be disrupted by Parkinson's disease (PD), which actively regulates synaptic neurotransmission. However, the morphological changes in astrocytes wrapping glutamatergic synapses in the striatum after dopamine (DA) neuronal degeneration is unclear. Methods: We utilized a range of methodologies, encompassing the 6-hydroxydopamine (6OHDA)-induced PD model, as well as techniques such as immunohistochemistry, Western blotting, immunofluorescence and immunoelectron microscopy (IEM) to delve into the consequences of DA neuronal degeneration on the morphological attributes of perisynaptic astrocytes. Results: Our findings demonstrated a notable rise in glial fibrillary acidic protein (GFAP) + astrocyte density and an upregulation in GFAP protein expression within the striatum due to DA neuronal degeneration, coincided with the enlargement, elongation, and thickening of astrocyte protuberances. However, the expression levels of glutamate transporter 1 (GLT1) and glutamine synthetase (GS), which are related to glutamate-glutamine cycle, were significantly reduced. Double immunofluorescence and IEM results indicated that different proportions of vesicular glutamate transporter 1 (VGlut1)+ and vesicular glutamate transporter 2 (VGlut2) + terminals were wrapped by astrocytes. Additionally, DA neuronal degeneration increased the percentage and area of VGlut1+ and VGlut2+ terminals wrapped by GFAP + astrocytes in the striatum. Furthermore, we noted that DA neuronal degeneration increased the percentage of VGlut1+ and VGlut2+ axo-spinous synapses wrapped by astrocytes but had no effect on axo-dendritic synapses. Conclusion: Hence, perisynaptic astrocytes wrapping striatal glutamatergic synapses exhibit substantial morphological and functional alterations following DA neuronal degeneration making them a potential target for therapeutic interventions in PD.

4.
Transl Psychiatry ; 14(1): 149, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493173

ABSTRACT

Chronic stress-induced anxiodepression is a common health problem, however its potential neurocircuitry mechanism remains unclear. We used behavioral, patch-clamp electrophysiology, chemogenetic, and optogenetic approaches to clarify the response of the lateral hypothalamus (LH) and the medial prefrontal cortex (mPFC) to stress, confirmed the structural connections between the LH and mPFC, and investigated the role of the LH-mPFC pathway in chronic stress-induced anxiodepression symptoms. Unpredictable chronic mild stress (UCMS) caused anxiodepression-like behaviors, including anxiety, anhedonia, and despair behaviors. We discovered that the activity of the LH and mPFC was both increased after restraint stress (RS), a stressor of UCMS. Then we found that the orexinergic neurons in the LH predominantly project to the glutamatergic neurons in the mPFC, and the excitability of these neurons were increased after UCMS. In addition, overactivated LH orexinergic terminals in the mPFC induced anhedonia but not anxiety and despair behaviors in naive mice. Moreover, chemogenetically inhibited LH-mPFC orexinergic projection neurons and blocked the orexin receptors in the mPFC alleviated anhedonia but not anxiety and despair behaviors in UCMS-treated mice. Our study identified a new neurocircuit from LH orexinergic neurons to mPFC and revealed its role in regulating anhedonia in response to stress. Overactivation of LHOrx-mPFC pathway selectively mediated chronic stress-induced anhedonia. In normal mice, the LHOrx-mPFC pathway exhibits relatively low activity. However, after chronic stress, the activity of orexinergic neuron in LH is overactivated, leading to an increased release of orexin into the mPFC. This heightened orexin concentration results in increased excitability of the mPFC through OX1R and OX2R, consequently triggering anhedonia.


Subject(s)
Anhedonia , Hypothalamic Area, Lateral , Mice , Animals , Hypothalamic Area, Lateral/metabolism , Orexins/metabolism , Anxiety , Prefrontal Cortex/metabolism
5.
Article in English | MEDLINE | ID: mdl-38401065

ABSTRACT

Objective: Trigeminal neuralgia (TN) is very common in the middle-aged and elderly population and seriously affects the normal life of patients. This study aims to analyze the therapeutic effect of percutaneous balloon compression (PBC) on TN and to explore the clinical significance of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), which not only can provide a reference for the clinical treatment of TN in the future, but also can help the clinic to find a reliable indicator for the assessment of TN condition. Methods: The length of stay, total cost of hospitalization, and adverse reactions during treatment were compared between the two groups. Patients were subjected to assessments or investigations of the Barrow Neurological Institute (BNI) scale, Pittsburgh Sleep Quality Index (PSQI), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS) before and after treatment. In addition, NLRP3 in the peripheral blood of patients in the research group was measured, and the correlation of NLRP3 with BNI score and prognosis for recurrence was analyzed. Results: The length of stay and the total cost of hospitalization were respectively (12.10±2.20) d and (26445.96±5553.78) yuan in the research group, significantly reduced than those in the control group (P < .05). And the BNI score, PSQI and SAS/SDS were lower in the research group after treatment (P < .05), but the incidence of facial numbness, herpes orofacialis and masticatory muscle weakness were higher in the research group than in the control group (P < .05). After treatment, NLRP3 decreased in the research group, which was positively correlated with BNI score (P < .05). In addition, NLRP3 showed an excellent effect in predicting recurrence. Conclusion: PBC effectively improved the pain and negative psychological status of patients with TN, and NLRP3 was closely related to the pain of patients with TN. In the future, PBC is used in the clinic to treat TN and improve the prognosis of patients.

6.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166994, 2024 03.
Article in English | MEDLINE | ID: mdl-38141838

ABSTRACT

Radiation injury of blood vessels (RIBV) is a serious long-term complication of radiotherapy, characterized by the development of atherosclerosis. The involvement of vascular smooth muscle cells (VSMCs) senescence in the pathogenesis of radiation-induced atherosclerosis has been implicated, yet the precise mechanisms governing VSMCs senescence remain inadequately comprehended. In this study, the senescence of VSMCs was examined by employing SA-ß-gal staining and assessing the expression of p16 and p21, both in vivo and in vitro. Our findings revealed that ionizing radiation (IR) has the potential to augment cellular senescence. In addition, IR significantly activated the NF-κB pathway, as evidenced by increased p65 nuclear translocation, phospho-p65 expression, and enhanced binding ability of p65 (EMSA). Furthermore, a decrease in HMGB2 expression following exposure to IR was observed via Western blot analysis, while CTCF expression remained unchanged. Interestingly, the formation of CTCF spatial clustering was detected under super-resolution fluorescence microscopy. Concurrently, the ChIP technique identified the facilitation of the interaction between CTCF and p16 gene through IR. The inhibition of CTCF or the overexpression of HMGB2 through lentiviruses effectively eliminates the formation of CTCF clusters and the upregulation of p16 and p21 after IR. Inhibition of NF-κB activation induced by IR by PDTC (100 µM) led to a decrease in the staining of SA-ß-gal, a reduction in p16 expression, an increase in HMGB2 protein expression and a decrease in CTCF clusters formation. This study provided significant insights into the role and mechanism of IR in VSMCs senescence by regulating NF-κB/CTCF/p16 pathway.


Subject(s)
Atherosclerosis , NF-kappa B , Humans , NF-kappa B/metabolism , Muscle, Smooth, Vascular/metabolism , HMGB2 Protein/metabolism , HMGB2 Protein/pharmacology , Cellular Senescence , Radiation, Ionizing , Atherosclerosis/metabolism
7.
Micromachines (Basel) ; 14(10)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37893385

ABSTRACT

A GaN high-electron-mobility transistor (HEMT) was simulated using the semiconductor simulation software Silvaco TCAD in this paper. By constructing a two-dimensional structure of GaN HEMT, combined with key models such as carrier mobility, the effects of a different state, different incidence position, different drain voltage, different LET values, and a different incidence angle on the single-event transient effect of GaN HEMT are simulated. LET stands for the linear energy transfer capacity of a particle, which refers to the amount of energy transferred by the particle to the irradiated substance on the unit path. The simulation results show that for GaN HEMTs, the single-event transient effect is more obvious when the device is in off-state than in on-state. The most sensitive location of GaN HEMTs to the single-event effect is in the region near the drain. The peak transient current increases with the increase in the drain bias and incident ion LET values. The drain charge collection time increases with the angle of incidence of heavy ion.

8.
Micromachines (Basel) ; 14(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37512768

ABSTRACT

In this paper, a P-type GaN buried layer is introduced into the buffer layer of AlGaN/GaN HEMTs, and the effect of the P-type GaN buried layer on the device's temperature characteristics is studied using Silvaco TCAD software. The results show that, compared to the conventional device structure, the introduction of a P-type GaN buried layer greatly weakens the peak of the channel electric field between the gate and drain of the device. This leads to a more uniform electric field distribution, a substantial reduction in the lattice temperature of the device, and a more uniform temperature distribution. Therefore, the phenomenon of negative resistance caused by self-heating effect is significantly mitigated, while the breakdown performance of the device is also notably enhanced.

9.
Front Neural Circuits ; 17: 1086873, 2023.
Article in English | MEDLINE | ID: mdl-37187913

ABSTRACT

The cerebral cortex innervates motor neurons in the anterior horn of the spinal cord by regulating of interneurons. At present, nerve tracing, immunohistochemistry, and immunoelectron microscopy are used to explore and confirm the characteristics of synaptic connections between the corticospinal tract (CST) and cervical spinal calretinin (Cr) interneurons. Our morphological results revealed that (1) biotinylated dextran amine labeled (BDA+) fibers from the cerebral cortex primarily presented a contralateral spinal distribution, with a denser distribution in the ventral horn (VH) than in the dorsal horn (DH). An electron microscope (EM) showed that BDA+ terminals formed asymmetric synapses with spinal neurons, and their mean labeling rate was not different between the DH and VH. (2) Cr-immunoreactive (Cr+) neurons were unevenly distributed throughout the spinal gray matter, and were denser and larger in the VH than in the DH. At the single labeling electron microscope (EM) level, the labeling rate of Cr+ dendrites was higher in the VH than in the DH, in which Cr+ dendrites mainly received asymmetric synaptic inputs, and between the VH and DH. (3) Immunofluorescence triple labeling showed obvious apposition points among BDA+ terminals, synaptophysin and Cr+ dendrites, with a higher density in the VH than in the DH. (4) Double labeling in EM, BDA+ terminals and Cr+ dendrites presented the same pattern, BDA+ terminals formed asymmetric synapses either with Cr+ dendrites or Cr negative (Cr-) dendrites, and Cr+ dendrites received either BDA+ terminals or BDA- synaptic inputs. The average percentage of BDA+ terminals targeting Cr+ dendrites was higher in the VH than in the DH, but the percentage of BDA+ terminals targeting Cr- dendrites was prominently higher than that targeting Cr+ dendrites. There was no difference in BDA+ terminal size. The percentage rate for Cr+ dendrites receiving BDA+ terminal inputs was lower than that receiving BDA- terminal inputs, and the BDA+ terminal size was larger than the BDA- terminal size received by Cr+ dendrites. The present morphological results suggested that spinal Cr+ interneurons are involved in the regulatory process of the cortico-spinal pathway.


Subject(s)
Motor Neurons , Synapses , Rats , Animals , Calbindin 2/metabolism , Synapses/physiology , Pyramidal Tracts , Cerebral Cortex/metabolism , Presynaptic Terminals/metabolism
10.
PLoS One ; 18(5): e0284803, 2023.
Article in English | MEDLINE | ID: mdl-37196019

ABSTRACT

China is in a critical stage of economic growth mode transformation. The digital transformation of the manufacturing industry may create new impetus and new models for economic growth. Taking the manufacturing industry of 25 prefecture-level cities in the Yangtze River Delta region as the research object, we explore the digital transformation process of the manufacturing industry and verifies its theoretical mechanism of promoting economic growth through the industrial structure. A panel model based on the improved Feder two-sector model and a multiple mediating effect model are established to explore the dynamic mechanism of manufacturing digital transformation to promote economic growth through industrial restructuring. The results show that the digital transformation of the manufacturing industry in the Yangtze River Delta region of China is relatively high, and the speed of digital transformation has been accelerating in recent years. The digital transformation of the manufacturing industry can promote the change in industrial structure and form a new driving force for economic growth. The key is to improve the level of industrial structure and extend the length of the industrial chain. Based on these, we propose measures to promote the transformation and upgrading of industrial structure for the sustainable development of China's economy.


Subject(s)
Economic Development , Industry , Manufacturing Industry , Cities , Commerce , China
11.
J Gastroenterol Hepatol ; 38(9): 1520-1529, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37202867

ABSTRACT

BACKGROUND AND AIM: Postoperative complications are important clinical outcomes for colon cancer patients. This study aimed to investigate the predictive value of inflammatory-nutritional indicators combined with computed tomography body composition on postoperative complications in patients with stage II-III colon cancer. METHODS: We retrospectively collected data from patients with stage II-III colon cancer admitted to our hospital from 2017 to 2021, including 198 patients in the training cohort and 50 patients in the validation cohort. Inflammatory-nutritional indicators and body composition were included in the univariate and multivariate analyses. Binary regression was used to develop a nomogram and evaluate its predictive value. RESULTS: In the multivariate analysis, the monocyte-lymphocyte ratio (MLR), systemic immune-inflammation index (SII), nutritional risk score (NRS), skeletal muscle index (SMI), and visceral fat index (VFI) were independent risk factors for postoperative complications of stage II-III colon cancer. In the training cohort, the area under the receiver operating characteristic curve of the predictive model was 0.825 (95% confidence interval [CI] 0.764-0.886). In the validation cohort, it was 0.901 (95% CI 0.816-0.986). The calibration curve showed that the prediction results were in good agreement with the observational results. Decision curve analysis showed that colon cancer patients could benefit from the predictive model. CONCLUSIONS: A nomogram combining MLR, SII, NRS, SMI, and VFI with good accuracy and reliability in predicting postoperative complications in patients with stage II-III colon cancer was established, which can help guide treatment decisions.


Subject(s)
Colonic Neoplasms , Humans , Reproducibility of Results , Retrospective Studies , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/surgery , Body Composition , Inflammation/diagnostic imaging , Inflammation/etiology , Nomograms , Postoperative Complications/diagnostic imaging , Postoperative Complications/etiology , Tomography
12.
Micromachines (Basel) ; 13(11)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36363882

ABSTRACT

The combined effect of total ionizing dose (TID) and electrical stress is investigated on NMOSFETs. For devices bearing both radiation and electrical stress, the threshold voltage shift is smaller than those only bearing electrical stress, indicating that the combined effect alleviates the degradation of the devices. The H bond is broken during the radiation process, which reduces the participation of H atoms in the later stage of electrical stress, thereby reducing the degradation caused by electrical stress. The positive charges of the oxide layer generated by radiation neutralize part of the tunneling electrons caused by electrical stress, and consume some of the electrons that react with the H bond, resulting in weaker degradation. In addition, the positive charges in shallow trench isolation (STI) generated by radiation create parasitic leakage paths at the interfaces of STI/Si, which increase the leakage current and reduce the positive shift of the threshold voltage. The parasitic effect generated by the positive charges of STI makes the threshold voltage of the narrow-channel device degrade more, and due to the gate edge effect, the threshold voltage of short-channel devices degrades more.

13.
Water Res ; 225: 119178, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36219893

ABSTRACT

Radioactive iodine-129 has been released from the La Hague nuclear fuel reprocessing facility (NRF) into the English Channel, but the distribution and transformation of the isotope species, and environmental consequences have not been fully characterized in the Channel. Here we present data on iodine isotopes (129I and 127I) species in surface water of the English Channel and the southern Celtic Sea. Compared to 127I species, the concentrations of 129I- and 129IO3- show more variations, but iodate is the major species for both 129I and 127I. Our data provide new information regarding iodide-iodate inter-conversion showing that water dilution and mixing are the main factors affecting the 127I and 129I species distribution in the Channel. Some reduction of iodate occurs within the English Channel and mainly in the west part because of biotic processes. The 129I species transformation is overall insignificant, especially in the eastern Channel, where a constant value of 129IO3-/129I is observed, which might characterize the La Hague wastewater signal. In the Celtic Sea, oxidation of iodide can be traced by 127I and 129I species. On a larger scale, 129I generally experienced an oxidation process in the Atlantic Ocean, while in the coast of shallow shelf seas, new produced 129I- can be identified, especially in the German Bight and the Baltic Sea. The data of 129I species in the English Channel can provide estimate of redox rates in a much broader marine areas if the transit time of 129I from La Hague is well-defined. Furthermore, estimate of inventories for 129I and its species in the Channel, and fluxes of 129I species from the English Channel to the North Sea add important information to the geochemical cycle of 129I.


Subject(s)
Thyroid Neoplasms , Water Pollutants, Radioactive , Humans , Iodine Radioisotopes/analysis , Water Pollutants, Radioactive/analysis , Iodides , Iodates , Seawater/chemistry , Wastewater , Iodine Isotopes/analysis , Water
14.
Transl Psychiatry ; 12(1): 380, 2022 09 10.
Article in English | MEDLINE | ID: mdl-36088395

ABSTRACT

Clinical studies have shown that social defeat is an important cause of mood-related disorders, accompanied by learning and memory impairment in humans. The mechanism of mood-related disorders has been widely studied. However, the specific neural network involved in learning and memory impairment caused by social defeat remains unclear. In this study, behavioral test results showed that the mice induced both learning and memory impairments and mood-related disorders after exposure to chronic social defeat stress (CSDS). c-Fos immunofluorescence and fiber photometry recording confirmed that CaMKIIα expressing neurons of the piriform cortex (PC) were selectively activated by exposure to CSDS. Next, chemogenetics and optogenetics were performed to activate PC CaMKIIα expressing neurons, which showed learning and memory impairment but not mood-related disorders. Furthermore, chemogenetic inhibition of PC CaMKIIα expressing neurons significantly alleviated learning and memory impairment induced by exposure to CSDS but did not relieve mood-related disorders. Therefore, our data suggest that the overactivation of PC CaMKIIα expressing neurons mediates CSDS-induced learning and memory impairment, but not mood-related disorders, and provides a potential therapeutic target for learning and memory impairment induced by social defeat.


Subject(s)
Piriform Cortex , Social Defeat , Animals , Anxiety , Humans , Memory Disorders , Mice , Stress, Psychological
15.
Front Mol Biosci ; 9: 844618, 2022.
Article in English | MEDLINE | ID: mdl-35923467

ABSTRACT

Background: Lung cancer is a significant challenge to human health. Members of the high mobility group (HMG) superfamily (HMGB proteins) are implicated in a wide variety of physiological and pathophysiological processes, but the expression and prognostic value of HMGB family members in non-small cell lung cancer (NSCLC) have not been elucidated. Methods: In this study, ONCOMINE, UALCAN, GEPIA, Kaplan-Meier Plotter, starBase, OncomiR databases, and GeneMANIA were utilized to evaluate the prognostic significance of HMGB family members in NSCLC. Results: HMGB2/3 expression levels were higher in NSCLC patients. HMGB1 expression was higher in lung squamous cell carcinoma (LUSC) and was lower in lung adenocarcinoma (LUAD) tissue than in normal lung tissue. HMGB2 expression was related to cancer stage. Increased HMGB1 mRNA expression levels were associated with improved lung cancer prognosis, including overall survival (OS), first-progression survival (FP), and post-progression survival (PPS). There was no significant association between HMGB2 levels and prognostic indicators. HMGB3 expression was associated with poorer OS. GeneMANIA and GO/KEGG pathway analysis showed that HMGB family members mainly associated with chromosome condensation, regulation of chromatin organization, and nucleosome binding in NSCLC. HMGBs expression were closely correlated with infiltrating levels of specific types of immune cells in NSCLC, especially Th2 cells, Th17 cells, and mast cells. hsa-miR-25-3p, hsa-miR-374a-3p, and hsa-miR-93-5p were significantly positively correlated with HMGB1, HMGB2, and HMGB3, respectively. However, hsa-miR-30a-5p was predicted to significantly negatively regulate HMGB3 expression. Conclusion: Our study revealed that HMGB1 is positively related to the improved prognosis in NSCLC, and demonstrate that HMGB3 might be a risk factor for poorer survival of NSCLC patients.

16.
Anat Sci Educ ; 15(5): 928-942, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35766990

ABSTRACT

The present study evaluated the students' psychological well-being, experiences, performance, and perception of learning regional anatomy remotely. A regional anatomy remote learning curriculum was designed and learning materials were delivered virtually to 120 undergraduate medical students at Jinan University, China. All the students consented and voluntarily participated in this study by completing self-administered online questionnaires including the Zung's Self-Rating Anxiety and Depression Scales at the beginning and end of the learning session. A subset participated in focus group discussions. Most of the students (90.0%) positively evaluated the current distance learning model. More than 80% were satisfied with the content arrangement and coverage. Many students preferred virtual lectures (68.2%) and videos showing dissections (70.6%) during the distance learning sessions. However, writing laboratory reports and case-based learning were the least preferred modes of learning as they were only preferred by 23.2% and 14.1% of the students, respectively. There was no significant lockdown-related anxiety or depression reported by students using depression and anxiety scales as well as feedback from focus group discussions. The surveyed students' confidence scores in distance learning were significantly higher after 5 weeks than at the beginning of the session (3.05 ± 0.83 vs. 3.70 ± 0.71, P < 0.05). Furthermore, the present results showed no significant differences between the current group's academic performance in the unit tests as well as the final overall evaluation for different parts of the course compared to that of the previous year's cohort. The findings above were congruent with focus group discussion data that the use of the online teaching platform for regional anatomy significantly improved the students' confidence in virtual and self-directed learning and did not negatively affect their academic performance.


Subject(s)
Anatomy , COVID-19 , Education, Medical, Undergraduate , Students, Medical , Anatomy/education , Anatomy, Regional/education , Communicable Disease Control , Curriculum , Education, Medical, Undergraduate/methods , Humans , Pandemics , Students, Medical/psychology
17.
Front Neural Circuits ; 16: 882366, 2022.
Article in English | MEDLINE | ID: mdl-35571271

ABSTRACT

Viral strategies are the leading methods for mapping neural circuits. Viral vehicles combined with genetic tools provide the possibility to visualize entire functional neural networks and monitor and manipulate neural circuit functions by high-resolution cell type- and projection-specific targeting. Optogenetics and chemogenetics drive brain research forward by exploring causal relationships among different brain regions. Viral strategies offer a fresh perspective for the analysis of the structure-function relationship of the neural circuitry. In this review, we summarize current and emerging viral strategies for targeting neural circuits and focus on adeno-associated virus (AAV) vectors.


Subject(s)
Genetic Vectors , Optogenetics , Brain/physiology , Neurons/physiology , Optogenetics/methods
18.
Stress ; 25(1): 166-178, 2022 01.
Article in English | MEDLINE | ID: mdl-35435121

ABSTRACT

Patients with post-traumatic stress disorder (PTSD) are usually at an increased risk for chronic disorders, such as irritable bowel syndrome (IBS), characterized by hyperalgesia and allodynia, but its subsequent effect on visceral hyperalgesia and the mechanism remain unclear. The present study employed single prolonged stress (SPS), a model of PTSD-pain comorbidity, behavioral evaluation, intrathecal drug delivery, immunohistochemistry, Western blotting, and RT-PCR techniques. When detecting visceral sensitivity, the score of the abdominal withdrawal reflex (AWR) induced by graded colorectal distention (CRD) was used. The AWR score was reduced in the SPS day 1 group but increased in the SPS day 7 and SPS day 14 groups at 40 mmHg and 60 mmHg, and the score was increased significantly with EphrinB1-Fc administration. The EphB2+ cell density and EphB2 protein and mRNA levels were downregulated in the SPS day 1 group and then upregulated significantly in the SPS day 7 group; these changes were more noticeable with EphrinB1-Fc administration compared with the SPS-only group. The C-Fos-positive reaction induced by SPS was mainly localized in neurons of the spinal dorsal horn, in which the C-Fos-positive cell density and its protein and mRNA levels were upregulated on SPS days 7 and 14; these changes were statistically significant in the SPS + EphrinB1-Fc group compared with the SPS alone group. The present study confirmed the time window for the AWR value, EphB2 and C-Fos changes, and the effect of EphrinB1-Fc on these changes, which suggests that spinal cord EphB2 activation exacerbates visceral pain after SPS.


Subject(s)
Hyperalgesia , Visceral Pain , Animals , Hyperalgesia/genetics , Hyperalgesia/metabolism , Male , Proto-Oncogene Proteins c-fos/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptor, EphB2/genetics , Receptor, EphB2/metabolism , Spinal Cord/metabolism , Stress, Psychological , Visceral Pain/genetics , Visceral Pain/metabolism
19.
Micromachines (Basel) ; 14(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36677140

ABSTRACT

In this paper, Silvaco TCAD software is used to simulate the buffer traps in AlGaN/GaN high electron mobility transistors (HEMTs), and its effects on the breakdown performance and key parameters of the devices are investigated by changing the position and concentration of the acceptor traps in the buffer layer. The results show that with the increase of trap concentration, the traps capture electrons and reduce the off-state leakage current, which can improve breakdown voltage of the devices. At the same time, as the trap concentration increases, the ionized traps make a high additional electric field near the drain edge, leading to the decrease of breakdown voltage. With the combined two effects above, the breakdown voltage almost ultimately saturates. When the source-to-gate (Access-S) region in the GaN buffer layer is doped alone, the minimum and most linear leakage current for the same trap concentrations are obtained, and the additional electric field has a relatively small effect on the electric field peak near the drain as the ionized traps are furthest from drain. All these factors make the breakdown voltage increase more controllably with the Access-S region doping, and it is a more potential way to improve the breakdown performance.

20.
J Transl Med ; 19(1): 216, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34016142

ABSTRACT

BACKGROUND: Eukaryotic translation initiation factor 6 (eIF6) has a crucial function in the maturation of 60S ribosomal subunits, and it controls the initiation of protein translation. Although emerging studies indicate that eIF6 is aberrantly expressed in various types of cancers, the functions and underlying molecular mechanisms of eIF6 in the pathological progression of hepatocellular carcinoma (HCC) remain unclear. This study aimed to evaluate the potential diagnostic and prognostic value of eIF6 in patients with HCC. METHODS: HCC samples enrolled from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and our cohort were used to explore the role and mechanism of eIF6 in HCC. The diagnostic power of eIF6 was verified by receiver operating characteristic curve (ROC) analysis and its prognostic value was assessed by Kaplan-Meier analysis, and then related biological functions of eIF6 were determined in vitro and in vivo cancer models. In addition, potential molecular mechanism of eIF6 in HCC was unveiled by the gene set enrichment analysis and western blot assay. RESULTS: We demonstrated that eIF6 expression was markedly increased in HCC, and elevated eIF6 expression correlated with pathological progression of HCC. Besides, eIF6 served as not only a new diagnostic biomarker but also an independent risk factor for OS in HCC patients. Functional studies indicated that the deletion of eIF6 displayed tumor-suppressor activity in HCC cells. Furthermore, we found that eIF6 could activate the mTOR-related signaling pathway and regulate the expression level of its target genes, such as CCND1, CDK4, CDK6, MYC, CASP3 and CTNNBL1, and these activities promoted proliferation and invasion of HCC cells. CONCLUSIONS: The findings of this study provided a novel basis for understanding the potential role of eIF6 in promoting tumor growth and invasion, and exploited a promising strategy for improving diagnosis and prognosis of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Eukaryotic Initiation Factors , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Prognosis , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...