Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Physiol ; 155(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37398997

ABSTRACT

Structural and functional studies of heart muscle are important to gain insights into the physiological bases of cardiac muscle contraction and the pathological bases of heart disease. While fresh muscle tissue works best for these kinds of studies, this is not always practical to obtain, especially for heart tissue from large animal models and humans. Conversely, tissue banks of frozen human hearts are available and could be a tremendous resource for translational research. It is not well understood, however, how liquid nitrogen freezing and cryostorage may impact the structural integrity of myocardium from large mammals. In this study, we directly compared the structural and functional integrity of never-frozen to previously frozen porcine myocardium to investigate the consequences of freezing and cryostorage. X-ray diffraction measurements from hydrated tissue under near-physiological conditions and electron microscope images from chemically fixed porcine myocardium showed that prior freezing has only minor effects on structural integrity of the muscle. Furthermore, mechanical studies similarly showed no significant differences in contractile capabilities of porcine myocardium with and without freezing and cryostorage. These results demonstrate that liquid nitrogen preservation is a practical approach for structural and functional studies of myocardium.


Subject(s)
Cryopreservation , Myocardium , Humans , Swine , Animals , Cryopreservation/methods , Freezing , Myocardial Contraction , Nitrogen , Mammals
2.
Circ Res ; 133(5): 430-443, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37470183

ABSTRACT

BACKGROUND: Modulating myosin function is a novel therapeutic approach in patients with cardiomyopathy. Danicamtiv is a novel myosin activator with promising preclinical data that is currently in clinical trials. While it is known that danicamtiv increases force and cardiomyocyte contractility without affecting calcium levels, detailed mechanistic studies regarding its mode of action are lacking. METHODS: Permeabilized porcine cardiac tissue and myofibrils were used for X-ray diffraction and mechanical measurements. A mouse model of genetic dilated cardiomyopathy was used to evaluate the ability of danicamtiv to correct the contractile deficit. RESULTS: Danicamtiv increased force and calcium sensitivity via increasing the number of myosins in the ON state and slowing cross-bridge turnover. Our detailed analysis showed that inhibition of ADP release results in decreased cross-bridge turnover with cross bridges staying attached longer and prolonging myofibril relaxation. Danicamtiv corrected decreased calcium sensitivity in demembranated tissue, abnormal twitch magnitude and kinetics in intact cardiac tissue, and reduced ejection fraction in the whole organ. CONCLUSIONS: As demonstrated by the detailed studies of Danicamtiv, increasing myosin recruitment and altering cross-bridge cycling are 2 mechanisms to increase force and calcium sensitivity in cardiac muscle. Myosin activators such as Danicamtiv can treat the causative hypocontractile phenotype in genetic dilated cardiomyopathy.


Subject(s)
Cardiomyopathy, Dilated , Mice , Animals , Swine , Cardiomyopathy, Dilated/drug therapy , Calcium/physiology , Myocardium , Myosins , Myocytes, Cardiac , Cardiotonic Agents
3.
bioRxiv ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36778318

ABSTRACT

Modulating myosin function is a novel therapeutic approach in patients with cardiomyopathy. Detailed mechanism of action of these agents can help predict potential unwanted affects and identify patient populations that can benefit most from them. Danicamtiv is a novel myosin activator with promising preclinical data that is currently in clinical trials. While it is known danicamtiv increases force and cardiomyocyte contractility without affecting calcium levels, detailed mechanistic studies regarding its mode of action are lacking. Using porcine cardiac tissue and myofibrils we demonstrate that Danicamtiv increases force and calcium sensitivity via increasing the number of myosin in the "on" state and slowing cross bridge turnover. Our detailed analysis shows that inhibition of ADP release results in decreased cross bridge turnover with cross bridges staying on longer and prolonging myofibril relaxation. Using a mouse model of genetic dilated cardiomyopathy, we demonstrated that Danicamtiv corrected calcium sensitivity in demembranated and abnormal twitch magnitude and kinetics in intact cardiac tissue. Significance Statement: Directly augmenting sarcomere function has potential to overcome limitations of currently used inotropic agents to improve cardiac contractility. Myosin modulation is a novel mechanism for increased contraction in cardiomyopathies. Danicamtiv is a myosin activator that is currently under investigation for use in cardiomyopathy patients. Our study is the first detailed mechanism of how Danicamtiv increases force and alters kinetics of cardiac activation and relaxation. This new understanding of the mechanism of action of Danicamtiv can be used to help identify patients that could benefit most from this treatment.

4.
Head Neck ; 43(9): 2602-2610, 2021 09.
Article in English | MEDLINE | ID: mdl-33904617

ABSTRACT

BACKGROUND: To evaluate the value of locoregional radiation therapy (LRRT) in de novo metastatic nasopharyngeal carcinoma (mNPC) and identify suitable candidates for additional LRRT after palliative chemotherapy (PCT). METHODS: Patients with de novo mNPC received platinum-based chemotherapy for a minimum of four cycles with or without definitive LRRT via intensity-modulated radiation therapy (IMRT) were all candidates for this study. RESULTS: A total of 168 patients were included for this analysis. Additional LRRT was associated with significantly longer median OS (69.5 vs. 17.8 months, p < 0.001) when compared with PCT alone. However, this survival benefit of LRRT was only reflected in patients with oligometastatic diseases (90.8 vs. 17 months, p < 0.001), but not for those with polymetastatic disease (p = 0.86). CONCLUSIONS: Additional LRRT after PCT may only improve OS for oligometastatic patients. For patients with polymetastatic disease, intensive systemic treatment such as the combination of immunotherapy and adequate PCT might be necessary.


Subject(s)
Nasopharyngeal Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Neoplasms/radiotherapy , Palliative Care , Retrospective Studies
5.
Front Oncol ; 11: 608842, 2021.
Article in English | MEDLINE | ID: mdl-33763352

ABSTRACT

Background: Several studies have shown that the hyaluronan-mediated motility receptor (HMMR) is overexpressed in various cancers and could be a potential prognostic factor. However, further research is still required to determine the prognostic value and potential function of HMMR in head and neck squamous cell carcinoma (HNSCC). Materials and Methods: Transcriptomic expression data were collected from the Cancer Genome Atlas database (TCGA) and Gene Expression Omnibus and the differences in HMMR expression between normal and tumor tissues were analyzed. The correlation between the methylation level of HMMR and its mRNA expression was analyzed via cBioPortal. Additionally, the data obtained from TCGA was analyzed with MethSurv to determine the prognostic value of the HMMR methylation levels in HNSCC. Gene set enrichment analysis (GSEA) and single sample GSEA (ssGSEA) were used to explore the potential biological functions of HMMR. Results: HMMR was highly expressed in HNSCC tumor tissue compared to normal tissue (p < 0.001). Multivariate analysis (MAV) showed that high HMMR mRNA expression was an independent prognostic factor of overall survival (OS) in TCGA (HR = 1.628, 95% CI: 1.169-2.266, p = 0.004) and GSE41613 data (HR = 2.238, p = 0.013). The methylation level of HMMR negatively correlated with the HMMR expression (R = -0.12, p < 0.001), and patients with low HMMR methylation had worse OS than patients with high methylation (p < 0.001). GSEA found that HMMR expression was associated with the KARS, EMT, and G2M checkpoint pathways, as well as the interferon-gamma and interferon-alpha responses, whereas ssGSEA showed that HMMR expression positively correlated with the infiltration level of Th2 cells. MAV confirmed that high HMMR protein expression was an inferior independent factor for OS (HR = 2.288, p = 0.045) and progression-free survival (HR = 2.247, p = 0.038) in 70 HNSCC. Conclusions: This study demonstrated that the upregulation of HMMR mRNA and protein in HNSCC is a biomarker for poor prognosis. The biological functions of HMMR are potentially related to the KARS, EMT, and G2M checkpoint pathways, as well as the interferon-gamma and interferon-alpha responses. These findings help to elucidate the role of HMMR in carcinogenesis and lay a foundation for further study.

6.
Radiother Oncol ; 156: 251-257, 2021 03.
Article in English | MEDLINE | ID: mdl-33418007

ABSTRACT

BACKGROUND AND PURPOSE: Although the efficacy of "reduced-volume intensity-modulated radiation therapy (IMRT)" in nasopharyngeal carcinoma (NPC) has been confirmed, two issues regarding the necessity of clinical target volume 1(CTV1) delineation and the optimal margin of CTV2 remained undetermined. The current series, utilized de-intensification technique that omitted the contouring of CTV1 and narrowed the margin of CTV2 from 10 mm to 8 mm, namely "modified reduced-volume IMRT" was initiated to evaluate the efficacy and feasibility of this renew technique in a prospective series. PATIENTS AND MATERIALS: Dosimetric analysis was performed in 40 non-metastatic NPC cases to evaluate whether our modification is feasible. Then this de-intensification technique was applied in non-metastatic NPC patients treated in our attending group since late 2014. Survival outcomes focused on local recurrence-free survival (LRFS) and local failure pattern were analyzed. RESULTS: Preliminary dosimetric evaluation of "modified reduced-volume IMRT" showed that the 60 Gy isodose curve generated naturally by this technique could well wrap the target area of CTV1. Subsequent observation series, which included a total of 471 patients and had a median follow-up time of 46.2 months(range,3.7-70.8 months), reported that 4-year estimated LRFS, regional recurrence-free survival (RRFS), distant metastasis-free survival (DMFS) and overall survival (OS) were 96.6%, 97.7%, 87.7% and 92.4%, respectively. All local recurrence lesions occurred within 95% isodose lines and were considered in-field failures. CONCLUSIONS: Our de-intensification technique "modified reduced-volume IMRT" was feasible and did not compromise therapeutic efficacy, well-designed multicenter prospective trials are needed for further research.


Subject(s)
Nasopharyngeal Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/radiotherapy , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/radiotherapy , Neoplasm Staging , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...