Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
ACS Nano ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722840

ABSTRACT

Direct photosynthesis of hydrogen peroxide (H2O2) from water and oxygen represents an intriguing alternative to the current indirect process involving the reduction and oxidation of quinones. However, limited light utilization and sluggish charge transfer largely impede overall photocatalytic efficiency. Herein, we present a heavily doped carbon nitride (CNKLi) nanocrystal for efficient and selective photoproduction of H2O2 via a two-electron oxygen reduction reaction (ORR) pathway. CNKLi induces metal-to-ligand charge transfer (MLCT) and electron trapping, which broadens the light absorption to the visible-near-infrared (vis-NIR) spectrum and prolongs the photoelectron lifetime to the microsecond time scale with an exceptional charge diffusion length of ∼1200 nm. Near-unit photoutilization with an apparent quantum yield (AQY) of 100% for H2O2 generation is achieved below 420 nm. Impressively, CNKLi exhibits an appreciable AQY of 16% at 700 nm, which reaches the absorption capacity (∼16%), thus suggesting a near-unit photon utilization <700 nm. In situ characterization and theoretical calculations reveal the facilitated charge transfer from K+ to the heptazine ring skeleton. These findings provide an approach to improve the photosynthetic efficiency of direct H2O2 preparation in the vis-NIR region and expand applications for driving kinetically slow and technologically desirable oxidations or high-value chemical generation.

2.
ChemSusChem ; : e202400472, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705869

ABSTRACT

Hydrogen peroxide (H2O2) has been considered an energy carrier (fuel) and oxidizer for various chemical synthesis and environmental remediation processes. Biomass valorization can generate high-value-added products in a green and pollution-free way to solve the energy and environmental crisis. The biomass valorization coupled with H2O2 generation via photo-, electro-, and photoelectrocatalysis plays a positive role in sustainable targets, which can maximize energy utilization and realize the production of value-added products and fuel synthesis. Recently, catalyst design and mechanism studies in H2O2 generation coupled with biomass valorization are in the infancy stage. Herein, this review begins with a background on photo-, electro-, and photoelectrocatalytic techniques for H2O2 generation, biomass valorization, and the H2O2 generation couples with biomass valorization. Meanwhile, the progress and reaction mechanism are reviewed. Finally, the prospects and challenges of a synergistic coupled system of H2O2 synthesis and value-added biomass in achieving high conversion, selectivity, and reaction efficiency are envisioned.

3.
Nanoscale ; 16(19): 9516-9524, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38656251

ABSTRACT

Metal organic frameworks (MOFs) with binder-free electrodes have shown promise for portable electrochemical energy storage applications. However, their low specific capacitance and challenges associated with the attachment of active materials to the substrate constrain their practical utility. In this research, we prepared a CoNi0.5-MOF/CC electrode by in situ growth of CoNi0.5-MOF on an H2O2-pretreated carbon cloth (CC) without using any binder. It exhibits a higher specific capacitance of 1337.5 F g-1 than that of CoNi0.5-MOF (∼578 F g-1) at a current density of 1 A g-1 and an excellent rate ability of 88% specific capacitance retention at a current density of 10 A g-1 after 6000 cycles. The as-assembled flexible asymmetric solid-state supercapacitor based on the CoNi0.5-MOF/CC positive electrode and a nitrogen-doped graphene (N-Gr) negative electrode exhibits an energy density of 61.46 W h kg-1 at a power density of 1244.56 W kg-1 and holds a stable capacitance of ∼125 F g-1 at 1 A g-1 when the flexible supercapacitor is bent, showing great potential for flexible electronics application. The H2O2 is indicated to play an important role, enhancing the adhesion of CoNi0.5-MOF on CC and reducing its charge transfer resistance by functionalizing the carbon fiber during the pretreatment of the CC matrix. The results provide a great way to prepare a flexible asymmetric solid-state supercapacitor with both high power density and high energy density for practical application.

4.
Front Biosci (Landmark Ed) ; 29(4): 139, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38682178

ABSTRACT

BACKGROUND: Hypoxic-ischaemic encephalopathy (HIE) is a major cause of neonatal disability and mortality. Although hypothermia therapy offers some neuroprotection, the recovery of neurological function is limited. Therefore, new synergistic therapies are necessary to improve the prognosis. Mesenchymal stem cell-based therapy is emerging as a promising treatment option for HIE. In this study, we studied the therapeutic efficacy of human placenta-derived mesenchymal stem cells (PD-MSCs) in the HIE rat model and analyzed the underlying therapeutic mechanisms. METHODS: Rats were divided into 6 groups (n = 9 for each) as follows: control, HIE model, HIE + normal saline, and HIE + PD-MSC transplantation at days 7, 14 and 28 postpartum. Following PD-MSC transplantation, neurological behavior was evaluated using rotarod tests, traction tests, and the Morris water maze test. The degree of brain tissue damage was assessed by histological examination and Nissl staining. Expression levels of apoptosis-related proteins and inflammatory factors were quantified by Western blotting and enzyme-linked immunosorbent assays. Immunofluorescence was used to investigate the ability of PD-MSCs to repair the morphology and function of hippocampal neurons with hypoxic-ischaemic (HI) injury. RESULTS: PD-MSC transplantation enhanced motor coordination and muscle strength in HIE rats. This treatment also improved spatial memory ability by repairing pathological damage and preventing the loss of neurons in the cerebral cortex. The most effective treatment was observed in the HIE + PD-MSC transplantation at day 7 group. Expression levels of microtubule-associated protein-2 (MAP-2), B-cell lymphoma-2 (BCL-2), interleukin (IL)-10, and transforming growth factor (TGF -ß1) were significantly higher in the HIE + PD-MSC treatment groups compared to the HIE group, whereas the levels of BCL-2-associated X protein (BAX), BCL-2-associated agonist of cell death (BAD), IL-1ß and tumour necrosis factor α (TNF-α) were significantly lower. CONCLUSIONS: We demonstrated that intravenous injection of PD-MSC at 7, 14 and 28 days after intrauterine HI damage in a rat model could improve learning, memory, and motor function, possibly by inhibiting apoptosis and inflammatory damage. These findings indicate that autologous PD-MSC therapy could have potential application for the treatment of HIE.


Subject(s)
Apoptosis , Hypoxia-Ischemia, Brain , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Placenta , Rats, Sprague-Dawley , Animals , Female , Mesenchymal Stem Cell Transplantation/methods , Pregnancy , Hypoxia-Ischemia, Brain/therapy , Humans , Placenta/cytology , Mesenchymal Stem Cells/cytology , Rats , Disease Models, Animal , Hippocampus/metabolism , Inflammation/therapy , Neurons/metabolism , Male
5.
Cognition ; 247: 105761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520793

ABSTRACT

There are three views of cognitive representation: the amodal, strong-embodiment, and weak-embodiment views of cognition. The present research provides support for the weak-embodiment view by demonstrating that two representational systems, one conceptual and one perceptual, underlie the cognitive processing of sensory experiences. We find that an initial sensory experience can exert two independent influences on judgments about a subsequent sensory experience. Specifically, we show that the conceptual representation of an initial sensory experience creates an expectation that biases judgments of the subsequent experience toward the initial experience (i.e., an assimilation bias), while the perceptual representation of an initial sensory experience creates a comparison standard that biases judgments of the subsequent experience away from the initial experience (i.e., a contrast bias). Documenting concurrent assimilation and contrast biases supports the claim of a dual representational system espoused by the weak-embodiment view. In so doing, we update the classic literature on context effects and contribute to the debate on representational systems in cognition.

6.
Front Med (Lausanne) ; 10: 1259680, 2023.
Article in English | MEDLINE | ID: mdl-38105903

ABSTRACT

Background: Cadmium (Cd) is a heavy metal associated with several human disorders. Preeclampsia is a major cause of maternal mortality worldwide. The association between maternal Cd exposure and preeclampsia remains elusive. Methods: To better understand this relationship, we conducted a systematic review and meta-analysis of eligible studies from five databases (PubMed, Embase, Web of Science, Scopus, and CNKI) from their inception to September 10, 2022. The quality of these studies was evaluated using the Newcastle-Ottawa quality assessment scale (NOS). We use random-effects models to calculate overall standardized mean differences (SMDs) and 95% confidence intervals (CIs). Sensitivity analyses were performed to assess the robustness of our results. We also evaluated publication bias using Egger's and Begg's tests. Additionally, we conducted meta-regression and sub-group analyses to identify potential sources of heterogeneity between studies. Results: Our analysis included a total of 17 studies with 10,373 participants. We found a significant association between maternal cadmium exposure and the risk of preeclampsia (SMD 0.27, 95% CI 0.09-0.44, p < 0.01). No significant publication bias was detected in Begg's or Egger's tests. Meta-regression suggested that geographical location, year of publication, cadmium samples, sample size, and measurement methods did not contribute to heterogeneity between studies. Conclusion: Our findings suggest that maternal blood cadmium levels are associated with an increased risk of preeclampsia. In contrast, the pregnant women's urine or placental levels of cadmium may not suggest preeclamptic risk during pregnancy. Further high-quality clinical studies and animal experiments are needed to understand this association better. Systematic review registration: PROSPERO, https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=361291, identifier: CRD42022361291.

7.
ACS Omega ; 8(37): 33883-33890, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37744836

ABSTRACT

Combustion and explosion accidents of the mixture may occur after the adsorption of volatile organic compounds (VOCs) by coal-based activated carbon (CBAC). It is of great significance to explore the oxidation and combustion performance of CBAC before and after adsorbing VOCs in order to prevent the reoccurrence of fire and explosion. Based on the CBAC sample commonly used in industrial production, three types of CBAC samples after adsorbing VOCs, i.e., acetone, cyclohexane, and butyl acetate, were prepared. The oxidation and combustion characteristics of the samples before and after adsorbing VOCs are measured and analyzed by thermal analyzer and cone calorimeter. Thermal analysis results indicate that during the oxidation process, the VOCs in the adsorbed samples will burn in the early stage, generating amounts of heat which may accelerate the oxidation and combustion of CBAC. According to the combustion performance experiments by cone calorimeter, it is also found that the combustion rate of CBAC after adsorbing VOCs is significantly enhanced. The time to ignition is shortened, the heat release rate becomes larger, and the time to reach the peak of heat release rate is significantly moved forward. In addition, the CO yield of the adsorbed sample is significantly improved. In general, VOC adsorption in CBAC can promote oxidation reactions and may result in an enhanced combustibility of CBAC.

8.
Chemosphere ; 335: 139086, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37263513

ABSTRACT

Although advanced oxidation processes (AOPs) based on persulfate (PS) is an attractive approach for repairing polycyclic aromatic hydrocarbons (PAHs) contaminated soils, limited oxidizability of PAHs and efficient in-situ activation of PS hinder its practical applications. In this study, we comprehensively examined the contributions of five representative surfactants on the oxidative remediation of PAHs-contaminated soil in terms of degradation kinetics of the pollutants, and further proposed an innovative coupling strategy of surfactant-enhanced thermally activated PS remediating PAHs-contaminated soil. The results showed that the degradation process of PAHs in soil was significantly facilitated only via adding sodium dodecyl benzenesulfonate (SDBS) and fitted the pseudo-first-order kinetic pattern. The removal of phenanthrene (PHE) reached 98.56% at 50 mM PS, 50 °C, 5 g L-1 SDBS and 48 h reaction time, accompanying an increase of 25% in reaction rate constant from 0.0572 h-1 (without SDBS) to 0.0715 h-1. More importantly, SDBS-enhanced thermally activated PS degrading PAHs with higher benzene rings were more effective as the reaction rate constants of pyrene (PYR) and benzo(a)anthracene (BaA) were significantly increased by 49.40% and 56.86%. Additionally, only appropriate dosages (5-10 g L-1) of SDBS facilitated the oxidative degradation of PHE, as well as the aging time of contaminant-soil contact slowed down the enhancement of oxidative degradation of PHE by SDBS. Scavenger experiments demonstrated that SO4·- and 1O2 were the dominant reactive oxygen species. Finally, a possible oxidative degradation pathway of PHE was proposed, and the toxicity of derived intermediates got alleviation by the assessment using the Toxicity Estimation Software Tool. This investigation was promising for in situ scale-up remediation of PAHs-contaminated soil.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Pulmonary Surfactants , Soil Pollutants , Surface-Active Agents , Polycyclic Aromatic Hydrocarbons/analysis , Biodegradation, Environmental , Soil , Soil Pollutants/analysis
9.
J Biochem Mol Toxicol ; 37(7): e23363, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37020384

ABSTRACT

Rolipram is a selective phosphodiesterase-4 (PDE4) inhibitor. The effect of rolipram on the metastasis of choriocarcinoma is barely known. Here, we evaluated the role of rolipram in the migration and invasion of human choriocarcinoma cells in vitro. Human choriocarcinoma cells lines JEG3 and JAR were used in this study. The expression profile of PDE4 subfamily members in choriocarcinoma cells was evaluated using real-time PCR. The migration and invasion properties of choriocarcinoma cells before and after inhibition of PDE4 by rolipram or RNAi-directed knockdown were evaluated in vitro. Expression levels of MMP9, TIMP1, E-cadherin, vimentin, TGFß1, SMAD1, and SMAD4 of choriocarcinoma cells were compared before and after rolipram treatment, RNAi-directed knockdown of PDE4D, and overexpression of PDE4D. We found PDE4D was the most commonly expressed isoform of PDE4 both in JEG3 and JAR cells. Rolipram and knockdown of PDE4D were efficient to inhibit the migration and invasion of choriocarcinoma cells in vitro, accompanied by decreased expression of MMP9 and TIMP1. Furthermore, rolipram and knockdown of PDE4D promoted the expression of E-cadherin but reduced the expression of vimentin in choriocarcinoma cells, and overexpression of PDE4D decreased the expression of E-cadherin but promoted the expression of vimentin. Rolipram suppressed migration and invasion of human choriocarcinoma cells in vitro, possibly by inhibiting epithelial-mesenchymal transition through PDE4 inhibition.


Subject(s)
Choriocarcinoma , Phosphodiesterase 4 Inhibitors , Pregnancy , Female , Humans , Rolipram/pharmacology , Rolipram/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Matrix Metalloproteinase 9/genetics , Vimentin , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Phosphodiesterase 4 Inhibitors/pharmacology
10.
Plant Sci ; 331: 111674, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36948404

ABSTRACT

Glycosylinositol phosphorylceramides (GIPCs) are the major sphingolipids in the plant plasma membrane. In Arabidopsis, mutations of genes involved in the synthesis of GIPCs affect many physiological aspects of plants, including growth, pollen fertility, defense, and stress signaling. Loss of function of the GIPC MANNOSYL-TRANSFERASE1 (AtGMT1) results in GIPC misglycosylation and induces plant immune responses accompanied by a severely dwarfed phenotype, thus indicating that GIPCs play important roles in plant immunity. Here, we investigated the enzymatic activity and phenotypes of transgenic lines of OsGMT1, the ortholog of AtGMT1. Sphingolipidomic analysis indicated that OsGMT1 retained the enzymatic activity of GIPC hexose (Hex) glycosylation, but the knockout lines did not accumulate H2O2. In contrast, the OsGMT1 overexpression lines showed significant down-regulation of several defense-associated or cell wall synthesis-associated genes, and enhanced sensitivity to rice blast. Furthermore, we first demonstrated the sensitivity of rice cells to MoNLP1 protein through calcein AM release assays using rice protoplasts, thus legitimizing the presence of MoNLPs in rice blast fungus. In addition, yeast two-hybrid screens using OsGMT1 as bait revealed that OsGMT1 may regulate heading time through the OsHAP5C signaling pathway. Together, our findings suggested clear physiological functional differentiation of GMT1 orthologs between rice and Arabidopsis.


Subject(s)
Arabidopsis , Oryza , Arabidopsis/metabolism , Hydrogen Peroxide/metabolism , Sphingolipids/metabolism , Plants/metabolism , Saccharomyces cerevisiae/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Plant Immunity/genetics , Oryza/physiology , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
11.
BMC Plant Biol ; 23(1): 11, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36604645

ABSTRACT

BACKGROUND: The sterile lemma is a unique organ of the rice (Oryza sativa L.) spikelet. However, the characteristics and origin of the rice sterile lemma have not been determined unequivocally, so it is important to elucidate the molecular mechanism of the development of the sterile lemma. RESULTS: In the paper, we outline the regulatory mechanism of sterile lemma development by LONG STERILE LEMMA1 (G1), which has been identified as the gene controlling sterile lemma development. Based on the comprehensive analyses of transcriptome dynamics during sterile lemma development with G1 alleles between wild-type (WT) and mutant (MT) in rice, we obtained co-expression data and regulatory networks related to sterile lemma development. Co-transfection assays of rice protoplasts confirmed that G1 affects the expression of various phytohormone-related genes by regulating a number of critical transcription factors, such as OsLBD37 and OSH1. The hormone levels in sterile lemmas from WT and MT of rice supports the hypotheses that lower auxin, lower gibberellin, and higher cytokinin concentrations are required to maintain a normal phenotype of sterile lemmas. CONCLUSION: The regulatory networks have considerable reference value, and some of the regulatory relationships exhibiting strong correlations are worthy of further study. Taken together, these work provided a detailed guide for further studies into the molecular mechanism of sterile lemma development.


Subject(s)
Oryza , Gene Regulatory Networks , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Mutation
12.
Mol Plant ; 15(12): 1931-1946, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36321201

ABSTRACT

Plants usually keep resistance (R) proteins in a static state under normal conditions to avoid autoimmunity and save energy for growth, but R proteins can be rapidly activated upon perceiving pathogen invasion. Pib, the first cloned blast disease R gene in rice, encoding a nucleotide-binding leucine-rich repeat (NLR) protein, mediates resistance to the blast fungal (Magnaporthe oryzae) isolates carrying the avirulence gene AvrPib. However, the molecular mechanisms about how Pib recognizes AvrPib and how it is inactivated and activated remain largely unclear. In this study, through map-based cloning and CRISPR-Cas9 gene editing, we proved that Pib contributes to the blast disease resistance of rice cultivar Yunyin (YY). Furthermore, an SH3 domain-containing protein, SH3P2, was found to associate with Pib mainly at clathrin-coated vesicles in rice cells, via direct binding with the coiled-coil (CC) domain of Pib. Interestingly, overexpression of SH3P2 in YY compromised Pib-mediated resistance to M. oryzae isolates carrying AvrPib and Pib-AvrPib recognition-induced cell death. SH3P2 competitively inhibits the self-association of the Pib CC domain in vitro, suggesting that binding of SH3P2 with Pib undermines its homodimerization. Moreover, SH3P2 can also interact with AvrPib and displays higher affinity to AvrPib than to Pib, which leads to dissociation of SH3P2 from Pib in the presence of AvrPib. Taken together, our results suggest that SH3P2 functions as a "protector" to keep Pib in a static state by direct interaction during normal growth but could be triggered off by the invasion of AvrPib-carrying M. oryzae isolates. Our study reveals a new mechanism about how an NLR protein is inactivated under normal conditions but is activated upon pathogen infection.


Subject(s)
Oryza , src Homology Domains , Oryza/genetics
13.
Nanoscale ; 14(42): 15908-15917, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36268823

ABSTRACT

The complicated preparation process and low energy density of polyaniline (PANI)-based electrodes limit their wide applications in flexible energy storage devices. In this work, a reduced graphene (rGO)-wrapped polyaniline nanofiber network (PANI-NFN)/oxidized carbon cloth (OCC) (rGO@PANI-NFN/OCC) composite was prepared by a facile impregnation method using reactive templates of MnO2 on the surface of OCC. The as-prepared rGO@PANI-NFN/OCC composite exhibited a high area specific capacitance of 4438 mF cm-2 and maintained an initial capacitance of 88.2% after 3000 GCD cycles. It can be used as an independent electrode to construct flexible solid-state supercapacitors (FSSCs), and the FSSCs based on rGO@PANI-NFN/OCC also exhibit a high energy density of 117.9 µW h cm-2 and 88.39% retention after 500 bending cycles, which shows a great prospect for flexible energy storage device applications. The enhanced performance of rGO@PANI-NFN/OCC composites is mainly attributed to the synergistic effect of PANI-NFN structures with a large specific surface area and a rGO wrap layer to reduce the swelling and shrinking of PANI.

14.
Comput Math Methods Med ; 2022: 8574000, 2022.
Article in English | MEDLINE | ID: mdl-35979051

ABSTRACT

Deep learning is a new learning concept and a highly effective way of learning, which is still being explored in the field of nursing education. This paper analyses the effectiveness of interventions in perioperative gynaecological care using humanised care in the operating theatre and the impact of this model of care on patients' psychological well-being and sleep quality. A deep learning-based vision robot was designed to provide higher quality of care for our human care and simplify our approach to gynaecological surgery. The anxiety and depression scores of the two groups were significantly improved after and before care, and the scores of the observation group were lower than those of the control group, with a statistically significant difference (P < 0.05). The humanised care for gynaecological surgery patients in the perioperative period is more conducive to the improvement of their negative emotions and at the same time can improve the sleep quality of patients, so it can be further promoted.


Subject(s)
Deep Learning , Anxiety/prevention & control , Female , Gynecologic Surgical Procedures , Humans
15.
Front Public Health ; 10: 968045, 2022.
Article in English | MEDLINE | ID: mdl-35979462

ABSTRACT

Background: Preeclampsia (PE) is a multi-organ syndrome that onsets in the second half of pregnancy. It is the second leading cause of maternal death globally. The homeostasis of zinc (Zn) levels is important for feto-maternal health. Objective: We aimed to collect all studies available to synthesize the evidence regarding the association between maternal Zn levels and the risk of preeclampsia. Methods: A systematic review and meta-analysis was conducted via searching seven electronic databases [PubMed, Web of Science, Embase, African Journals Online (AJOL), ClinicalTrial.gov, and two Chinese databases: Wanfang and Chinese National Knowledge Infrastructure, CNKI]. Studies reporting maternal serum Zn levels in pregnant women with or without preeclampsia were included. Eligible studies were assessed through Newcastle-Ottawa Scale (NOS) and the meta-analysis was performed via RevMan and Stata. The random-effects method (REM) was used for the meta-analysis with 95% confidence interval (CI). The pooled result was assessed using standard mean difference (SMD). The heterogeneity test was carried out using I 2 statistics, and the publication bias was evaluated using Begg's and Egger's test. Meta-regression and sensitivity analysis was performed via Stata software. Results: A total of 51 studies were included in the final analysis. 6,947 participants from 23 countries were involved in our study. All studies went through the quality assessment. The pooled results showed that maternal serum Zn levels were lower in preeclamptic women than in healthy pregnant women (SMD: -1.00, 95% CI: -1.29, -0.70). Sub-group analysis revealed that geographical, economic context, and disease severity may further influence serum Zn levels and preeclampsia. Limitations: There are significant between-study heterogeneity and publication bias among included studies. Conclusions: A lower level of maternal Zn was associated with increased risks of preeclampsia. The associations were not entirely consistent across countries and regions worldwide. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=337069, Identifier: CRD42022337069.


Subject(s)
Pre-Eclampsia , Asian People , Female , Humans , Pregnancy , Pregnant Women , Zinc
16.
Transl Pediatr ; 11(6): 987-1000, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35800262

ABSTRACT

Background: Qinxiang Qingjie (QXQJ), an oral solution containing various Chinese herbs, is indicated for pediatric upper respiratory tract infections. The treatment of influenza also shows potential advantages in shortening the duration of illness and improving symptoms. However, there is still a lack of high-quality clinical evidence to support this. The trial was to explore the efficacy and safety of QXQJ for treating pediatric influenza and provide an evidence-based basis for expanding its applicability. Methods: A randomized, double-blind, double-dummy, positive-controlled, multicenter clinical trial was conducted in 14 hospitals in China. Children aged 1-13 years with influenza and "exterior and interior heat syndromes" as defined by traditional Chinese medicine (TCM) were randomly assigned to two groups with 1:1 radio. Children in the test group received QXQJ oral solution and oseltamivir simulant, while the control group received oseltamivir phosphate granules and QXQJ simulant. The duration of treatment was five days, followed by a two-day follow-up period. The primary endpoint was the clinical recovery time. Secondary endpoints included the time to defervescence, incidences of complications and severe or critical influenza, negative conversion rate, improvement of TCM syndromes, and safety profiles of the therapeutics, which mainly contained the adverse clinical events and adverse drug reactions. Results: A total of 231 children were randomized to either the QXQJ (n=117) or oseltamivir (n=114) group. The FAS and PPS results showed that both groups experienced a median clinical recovery time of three days (P>0.05). The median time to defervescence of both groups were 36 hours in FAS and PPS (P>0.05), and two groups did not differ in terms of the other secondary endpoints (P>0.05). 14 patients (12.39%) in the QXQJ group and 14 patients (12.50%) in the oseltamivir group reported at least one adverse event, respectively. One serious adverse event occurred in the QXQJ group. There was no significant difference in the incidence of adverse events or adverse drug reactions between the groups. Conclusions: The efficacy of QXQJ oral solution was comparable to that of oseltamivir for treating influenza in children, with an acceptable safety profile. Trial Registration: Chinese Clinical Trial Registry ChiCTR1900021060.

17.
Gene ; 838: 146708, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35772655

ABSTRACT

The glycosyltransferase 64 (GT64) family is widely conserved in many species, including animals and plants. The functions of GT64 family genes in animals have been well characterized in the biosynthesis of extracellular heparan sulfate, whereas two GT64 members in Arabidopsis thaliana are involved in the glycosylation of plasma membrane glycosylinositol phosphorylceramides (GIPCs). GIPCs are the main components of plant sphingolipids and serve as important signal molecules in various developmental processes and stress responses. Rice (Oryza sativa), a model monocot plant, contains four GT64 members in its genome. Using phylogenetic analysis, 73 GT64s from 19 plant species were divided into three main groups. Each group can be represented by the three members in Arabidopsis and show a trend of monocot-eudicot divergence. A promoter and genomic variation analysis of GT64s in rice showed that various stress-related regulatory elements exist in their promoters, and many sequence variations were found between the two main rice subspecies, japonica and indica. Additionally, transmembrane domain and subcellular localization analyses revealed that these genes all encode membrane-bound glycosyltransferases and are localized to the Golgi apparatus. Finally, expression analysis of the four GT64 genes in rice, as assessed by quantitative real-time PCR, showed that they have distinct tissue-specific expression patterns and respond to different hormone treatments or abiotic stresses. Our results indicated that this family of genes may play a role in different stress responses and hormone signaling pathways in rice, which will provide fundamental information for further investigation of their functions in future.


Subject(s)
Arabidopsis , Oryza , Animals , Arabidopsis/genetics , Gene Expression Regulation, Plant , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Hormones/metabolism , Multigene Family , Oryza/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
18.
Planta ; 255(2): 43, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35044566

ABSTRACT

MAIN CONCLUSION: We identified a typical rice premature senescence leaf mutant 86 (psl86) and exhibited the first global ubiquitination data during rice leaf senescence. Premature leaf senescence affects the yield and quality of rice, causing irreparable agricultural economic losses. In this study, we reported a rice premature senescence leaf mutant 86 (psl86) in the population lines of rice (Oryza sativa) japonica cultivar 'Yunyin' (YY) mutagenized using ethyl methane sulfonate (EMS) treatment. Immunoblotting analysis revealed that a higher ubiquitination level in the psl86 mutant compared with YY. Thus, we performed the proteome and ubiquitylome analyses to identify the differential abundance proteins and ubiquitinated proteins (sites) related to leaf senescence. Among 885 quantified lysine ubiquitination (Kub) sites in 492 proteins, 116 sites in 94 proteins were classified as up-regulated targets and seven sites in six proteins were classified as down-regulated targets at a threshold of 1.5. Proteins with up-regulated Kub sites were mainly enriched in the carbon fixation in photosynthetic organisms, glycolysis/gluconeogenesis and the pentose phosphate pathway. Notably, 14 up-regulated Kub sites in 11 proteins were enriched in the carbon fixation in photosynthetic organism pathway, and seven proteins (rbcL, PGK, GAPA, FBA5, ALDP, CFBP1 and GGAT) were down-regulated, indicating this pathway is tightly regulated by ubiquitination during leaf senescence. To our knowledge, we present the first global data on ubiquitination during rice leaf senescence.


Subject(s)
Oryza , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Senescence , Proteome
19.
Mol Plant Pathol ; 23(1): 78-91, 2022 01.
Article in English | MEDLINE | ID: mdl-34633131

ABSTRACT

Lesion mimic mutants resembling the hypersensitive response without pathogen attack are an ideal material to understand programmed cell death, the defence response, and the cross-talk between defence response and development in plants. In this study, mic, a lesion mimic mutant from cultivar Yunyin treated with ethyl methanesulphonate (EMS), was screened. By map-based cloning, a short-chain alcohol dehydrogenase/reductase with an atypical active site HxxxK was isolated and designated as SDR7-6. It functions as a homomultimer in rice and is localized at the endoplasmic reticulum. The lesion mimic phenotype of the mutant is light-dependent. The mutant displayed an increased resistance response to bacterial blight, but reduced resistance to rice blast disease. The mutant and knockout lines showed increased reactive oxygen species, jasmonic acid content, antioxidant enzyme activity, and expression of pathogenicity-related genes, while chlorophyll content was significantly reduced. The knockout lines showed significant reduction in grain size, seed setting rate, 1000-grain weight, grain weight per plant, panicle length, and plant height. SDR7-6 is a new lesion mimic gene that encodes a short-chain alcohol dehydrogenase with atypical catalytic site. Disruption of SDR7-6 led to cell death and had adverse effects on multiple agricultural characters. SDR7-6 may act at the interface of the two defence pathways of bacterial blight and rice blast disease in rice.


Subject(s)
Oryza , Short Chain Dehydrogenase-Reductases , Cell Death , Disease Resistance/genetics , Gene Expression Regulation, Plant , Mutation/genetics , Oryza/genetics , Oryza/metabolism , Oxidoreductases , Plant Diseases/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
20.
Anticancer Agents Med Chem ; 22(10): 1933-1944, 2022.
Article in English | MEDLINE | ID: mdl-34773964

ABSTRACT

BACKGROUND: Resveratrol is a natural polyphenol commonly seen in foods. It has demonstrated an inhibitive effect on endometrial cancer, but the molecular action is still not known. OBJECTIVE: We aimed to use network pharmacology to systematically study the possible mechanisms of resveratrol's pharmacological effects on type I endometrial cancer. METHODS: Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) were used to predict resveratrol's possible target genes. They were then converted to UniProt gene symbols. Simultaneously, type I endometrial cancer-related target genes were collected from GeneCards. All data were pooled to identify common target genes. The protein-protein interaction (PPI) network was constructed and further analyzed via STRING Online Database. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were also performed afterward. To visualise resveratrol's overall pharmacological effects on type I endometrial cancer, a network of drug components-target gene-disease (CTD) was constructed. Then, we performed in silico molecular docking study to validate the possible binding conformation between resveratrol and candidate targets. RESULTS: There are 150 target genes of resveratrol retrieved after UniProt conversion; 122 of them shared interaction with type I endometrial cancer. Some important oncogenes and signaling pathways are involved in the process of resveratrol's pharmacological effects on endometrioid cancer. Molecular docking analysis confirmed that hydrogen bonding and hydrophobic interaction are the main interaction between resveratrol and its targets. CONCLUSION: We have explored the possible underlying mechanism of resveratrol in antagonising type I endometrial cancer through a network pharmacology-based approach and in-silico verification. However, further experiments are necessary to add to the evidence identifying resveratrol as a promising anti-type I endometrial cancer agent.


Subject(s)
Drugs, Chinese Herbal , Endometrial Neoplasms , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Endometrial Neoplasms/drug therapy , Female , Humans , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Resveratrol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...