Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Natl Sci Rev ; 10(3): nwac257, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36879845

ABSTRACT

This study, via combined analysis of geophysical and geochemical data, reveals a lithospheric architecture characterized by crust-mantle decoupling and vertical heat-flow conduits that control orogenic gold mineralization in the Ailaoshan gold belt on the southeastern margin of Tibet. The mantle seismic tomography indicates that the crust-mantle decoupled deformation, defined from previous seismic anisotropy analysis, was formed by upwelling and lateral flow of the asthenosphere, driven by deep subduction of the Indian continent. Our magnetotelluric and seismic images show both a vertical conductor across the Moho and high Vp/Vs anomalies both in the uppermost mantle and lowest crust, suggesting that crust-mantle decoupling promotes ponding of mantle-derived basic melts at the base of the crust via a heat-flow conduit. Noble gas isotope and halogen ratios of gold-related ore minerals indicate a mantle source of ore fluid. A rapid decrease in Cl/F ratios of lamprophyres under conditions of 1.2 GPa and 1050°C suggests that the ore fluid was derived from degassing of the basic melts. Similar lithospheric architecture is recognized in other orogenic gold provinces, implying analogous formational controls.

2.
ACS Nano ; 17(3): 2487-2496, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36724005

ABSTRACT

Fiber supercapacitors are promising power supplies suitable for wearable electronics, but the internally insufficient cross-linking and random structure of fiber electrodes restrict their performance. This study describes how interfacial cross-linking and oriented structure can fabricate an MXene fiber with high flexibility and electrochemical performance. The continuous and highly oriented macroscopic fibers were constructed by 2D MXene sheets via a liquid-crystalline wet-spinning assembly. The oxyanion-enriched terminations of surface-modified MXene in situ could reinforce the interfacial cross-linking by electrostatic interactions while mediating the sheet-to-sheet lamellar structure within the fiber. The resultant MXene fiber exhibits high electrical conductivity (3545 S cm-1) and mechanical strength (205.5 MPa) and high pseudocapacitance charge storage capability up to 1570.5 F cm-3. Notably, the assembled fiber supercapacitor delivers an energy density of 77.6 mWh cm-3 at 401.9 mW cm-3, exceptional flexibility and stability exhibiting ∼99.5% capacitance retention under mechanical deformation, and can be integrated into commercial textiles to power microelectronic devices. This work provides insight into the fabrication of an advanced MXene fiber and the development of high-performance flexible fiber supercapacitors.

3.
Nanoscale ; 12(3): 1374-1383, 2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31872852

ABSTRACT

Macroscopic assembly of 2D nanomaterials, especially for the one-dimensional macroscopic ordered fiber assembly from 2D liquid crystals (LCs), is rising to an unprecedented height and will continue to be an important topic in materials. However, this case of 2D functional metal oxide nanosheets is quite challenging. For the first time, the high-performance tungstate macroscopic fiber has been realized through an LC wet-spinning process involving the formation of LC colloid with spinnability and performance improvement by interlayer bridging in macroscopic assembly. The resultant macroscopic fiber yields record high tensile strength (198.5 MPa) and fracture toughness (3.0 MJ m-3) owing to their highly ordered structure and strong ionic interlayer bridging. Despite the intrinsically weak mechanical strength of the nanosheets, with only a few percent of graphene, the fibers manifest mechanical properties comparable to that of graphene fibers. Inspired by this concept, the possible macroscopic fibers assembled from other 2D functional metal oxide nanosheets will become a reality in the near future, holding great promise in aerospace and wearable applications.

4.
Biosens Bioelectron ; 141: 111481, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31260904

ABSTRACT

Three-dimensional (3D) cell cultures developed with living cells and scaffolds have demonstrated outstanding potential for tissue engineering and regenerative medicine applications. However, no suitable tools are available to monitor dynamically variable cell behavior in such a complex microenvironment. In particular, simultaneously assessing cell behavior, cell secretion, and the general state of a 3D culture system is of a really challenging task. This paper presents our development of a dual-transduction-integrated biosensing system that assesses electrical impedance in conjunction with imaging techniques to simultaneously investigate the 3D cell-culture for bone regeneration. First, we created models to mimic the dynamic deposition of the extracellular matrix (ECM) in 3D culture, which underwent osteogenesis by incorporating different amounts of bone-ECM components (collagen, hydroxyapatite [HAp], and hyaluronic acid [HA]) into alginate-based hydrogels. The formed models were investigated by means of electrical impedance spectroscopy (EIS), with the results showing that the impedances increased linearly with collagen and hyaluronan, but changed in a more complex manner with HAp. Thereafter, we created two models that consisted of primary osteoblast cells (OBs), which expressed the enhanced green fluorescent protein (EGFP), and 4T1 cells, which secreted the EGFP-HA, in the alginate hydrogel. We found the capacitance (associated with impedance and measured by EIS) increased with the increases in initial embedded OBs, and also confirmed the cell proliferation over 3 days with the EGFP signal as monitored by the fluorescent imaging component in our system. Interestingly, the change in capacitance is found to be associated with OB migration following stimulation. Also, we show higher capacitance in 4T1 cells that secret HA when compared to control 4T1 cells after a 3-day culture. Taken together, we demonstrate that our biosensing system is able to investigate the dynamic process of 3D culture in a non-invasive and real-time manner.


Subject(s)
Biosensing Techniques/instrumentation , Bone Regeneration , Cell Culture Techniques/instrumentation , Animals , Cell Line , Cells, Cultured , Collagen/metabolism , Durapatite/metabolism , Electric Impedance , Equipment Design , Extracellular Matrix/metabolism , Hyaluronic Acid/metabolism , Mice , Osteoblasts/cytology , Osteoblasts/metabolism , Tissue Scaffolds/chemistry , Transducers
5.
Nano Lett ; 17(6): 3543-3549, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28535338

ABSTRACT

Increasing interest has recently been devoted to developing small, rapid, and portable electronic devices; thus, it is becoming critically important to provide matching light and flexible energy-storage systems to power them. To this end, compared with the inevitable drawbacks of being bulky, heavy, and rigid for traditional planar sandwiched structures, linear fiber-shaped lithium-ion batteries (LIB) have become increasingly important owing to their combined superiorities of miniaturization, adaptability, and weavability, the progress of which being heavily dependent on the development of new fiber-shaped electrodes. Here, we report a novel fiber battery electrode based on the most widely used LIB material, titanium oxide, which is processed into two-dimensional nanosheets and assembled into a macroscopic fiber by a scalable wet-spinning process. The titania sheets are regularly stacked and conformally hybridized in situ with reduced graphene oxide (rGO), thereby serving as efficient current collectors, which endows the novel fiber electrode with excellent integrated mechanical properties combined with superior battery performances in terms of linear densities, rate capabilities, and cyclic behaviors. The present study clearly demonstrates a new material-design paradigm toward novel fiber electrodes by assembling metal oxide nanosheets into an ordered macroscopic structure, which would represent the most-promising solution to advanced flexible energy-storage systems.

6.
J Am Chem Soc ; 137(40): 13200-8, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26393380

ABSTRACT

The strong interest in macroscopic graphene and/or carbon nanotube (CNT) fiber has highlighted that anisotropic nanostructured materials are ideal components for fabricating fiber assemblies. Prospectively, employing two-dimensional (2D) crystals or nanosheets of functionality-rich transition metal oxides would notably enrich the general knowledge for desirable fiber constructions and more importantly would greatly broaden the scope of functionalities. However, the fibers obtained up to now have been limited to carbon-related materials, while those made of 2D crystals of metal oxides have not been achieved, probably due to the intrinsically low mechanical stiffness of a molecular sheet of metal oxides, which is only few hundredths of that for graphene. Here, using 2D titania sheets as an illustrating example, we present the first successful fabrication of macroscopic fiber of metal oxides composed of highly aligned stacking sheets with enhanced sheet-to-sheet binding interactions. Regardless of the intrinsically weak Ti-O bond in molecular titania sheets, the optimal fiber manifested mechanical performance comparable to that documented for graphene or CNTs. This work provided important hints for devising optimized architecture in macroscopic assemblies, and the rich functionalities of titania promises fibers with limitless promise for a wealth of innovative applications.

SELECTION OF CITATIONS
SEARCH DETAIL