Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 922
Filter
1.
Support Care Cancer ; 32(6): 336, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727753

ABSTRACT

PURPOSE: Adolescent and young adults (AYAs) with metastatic breast cancer (MBC) experience high physical and psychosocial burdens compounded by a disrupted life trajectory. We sought to determine the psychosocial and supportive care concerns of this population to better understand and address unmet needs. METHODS: AYAs diagnosed with MBC (18-39 years) participating in a prospective interventional study (Young, Empowered, and Strong) at Dana-Farber Cancer Institute completed an electronic survey following enrollment. Measures evaluated sociodemographics, health behaviors, quality of life, and symptoms, among others. We used two-sided Fisher's exact tests to determine associations between concerns (e.g., cancer progression, side effects, lifestyle, finances, fertility) and demographic variables. RESULTS: Among 77 participants enrolled from 9/2020-12/2022, average age at MBC diagnosis and survey was 35.9 (range: 22-39) and 38.3 years (range: 27-46), respectively. Most were non-Hispanic white (83.8%) and 40.3% reported their diagnosis caused some financial problems. Many were concerned about fertility (27.0%), long-term treatment side effects (67.6%), exercise (61.6%), and diet (54.1%). Select concerns varied significantly by age, race/ethnicity, and education. Younger women at survey reported greater concern about familial cancer risk (p = 0.028). Women from minority racial/ethnic groups more frequently reported issues talking about their cancer to family/friends (p = 0.040) while those with more education were more frequently concerned with long-term effects of cancer on their health (p = 0.021). CONCLUSION: Young women living with MBC frequently report psychosocial, health, and cancer management concerns. Tailoring supportive care and communications to address prevalent concerns including disease progression and treatment side effects may optimize wellbeing.


Subject(s)
Breast Neoplasms , Quality of Life , Humans , Female , Prospective Studies , Breast Neoplasms/psychology , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Adult , Young Adult , Surveys and Questionnaires , Social Support , Adolescent , Middle Aged
2.
iScience ; 27(5): 109818, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38766356

ABSTRACT

Allergic asthma is a chronic non-communicable disease characterized by lung tissue inflammation. Current treatments can alleviate the clinical symptoms to some extent, but there is still no cure. Recently, the transplantation of mesenchymal stem cells (MSCs) has emerged as a potential approach for treating allergic asthma. Gingival-derived mesenchymal stem cells (GMSCs), a type of MSC recently studied, have shown significant therapeutic effects in various experimental models of autoimmune diseases. However, their application in allergic diseases has yet to be fully elucidated. In this study, using an OVA-induced allergic asthma model, we demonstrated that GMSCs decrease CD11b+CD11c+ proinflammatory dendritic cells (DCs), reduce Th2 cells differentiation, and thus effectively diminish eosinophils infiltration. We also identified that the core functional factor, hepatocyte growth factor (HGF) secreted by GMSCs, mediated its effects in relieving airway inflammation. Taken together, our findings indicate GMSCs as a potential therapy for allergic asthma and other related diseases.

3.
Article in English | MEDLINE | ID: mdl-38769276

ABSTRACT

The subjective experience of time flow in speech deviates from the sound acoustics in substantial ways. The present study focuses on the perceptual tendency to regularize time intervals found in speech but not in other types of sounds with a similar temporal structure. We investigate to what extent individual beat perception ability is responsible for perceptual regularization and if the effect can be eliminated through the involvement of body movement during listening. Participants performed a musical beat perception task and compared spoken sentences to their drumbeat-based versions either after passive listening or after listening and moving along with the beat of the sentences. The results show that the interval regularization prevails in listeners with a low beat perception ability performing a passive listening task and is eliminated in an active listening task involving body movement. Body movement also helped to promote a veridical percept of temporal structure in speech at the group level. We suggest that body movement engages an internal timekeeping mechanism, promoting the fidelity of auditory encoding even in sounds of high temporal complexity and irregularity such as natural speech.

4.
Environ Microbiol ; 26(5): e16622, 2024 May.
Article in English | MEDLINE | ID: mdl-38757466

ABSTRACT

Microbial communities that reduce nitrous oxide (N2O) are divided into two clades, nosZI and nosZII. These clades significantly differ in their ecological niches and their implications for N2O emissions in terrestrial environments. However, our understanding of N2O reducers in aquatic systems is currently limited. This study investigated the relative abundance and diversity of nosZI- and nosZII-type N2O reducers in rivers and their impact on N2O emissions. Our findings revealed that stream sediments possess a high capacity for N2O reduction, surpassing N2O production under high N2O/NO3- ratio conditions. This study, along with others in freshwater systems, demonstrated that nosZI marginally dominates more often in rivers. While microbes containing either nosZI and nosZII were crucial in reducing N2O emissions, the net contribution of nosZII-containing microbes was more significant. This can be attributed to the nir gene co-occurring more frequently with the nosZI gene than with the nosZII gene. The diversity within each clade also played a role, with nosZII species being more likely to function as N2O sinks in streams with higher N2O concentrations. Overall, our findings provide a foundation for a better understanding of the biogeography of stream N2O reducers and their effects on N2O emissions.


Subject(s)
Bacteria , Nitrous Oxide , Rivers , Nitrous Oxide/metabolism , Rivers/microbiology , Rivers/chemistry , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Geologic Sediments/microbiology , Oxidation-Reduction , Phylogeography , Phylogeny , Microbiota
6.
Nano Lett ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709758

ABSTRACT

Two-dimensional (2D) semiconductors possess exceptional electronic, optical, and magnetic properties, making them highly desirable for widespread applications. However, conventional mechanical exfoliation and epitaxial growth methods are insufficient in meeting the demand for atomically thin films covering large areas while maintaining high quality. Herein, leveraging liquid metal oxidation reaction, we propose a motorized spin-coating exfoliation strategy to efficiently produce large-area 2D metal oxide (2DMO) semiconductors with high crystallinity, atomically thin thickness, and flat surfaces on diverse substrates. Moreover, we realized a 2D gallium oxide-based deep ultraviolet solar-blind photodetector featuring a metal-semiconductor-metal structure, showcasing high responsivity (8.24 A W-1) at 254 nm and excellent sensitivity (4.3 × 1012 cm Hz1/2 W-1). This novel liquid-metal-based spin-coating exfoliation strategy offers great potential for synthesizing atomically thin 2D semiconductors, opening new avenues for future functional electronic and optical applications.

7.
Carbohydr Polym ; 337: 122187, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710543

ABSTRACT

The effects of different electron beam irradiation doses (2, 4, 8 KGy) and various types of fatty acids (lauric acid, stearic acid, and oleic acid) on the formation, structure, physicochemical properties, and digestibility of starch-lipid complex were investigated. The complexing index of the complexes was higher than 85 %, indicating that the three fatty acids could easily form complexes with starch. With the increase of electron beam irradiation dose, the complexing index increased first and then decreased. The highest complexing index was lauric acid (97.12 %), stearic acid (96.80 %), and oleic acid (97.51 %) at 2 KGy radiation dose, respectively. Moreover, the microstructure, crystal structure, thermal stability, rheological properties, and starch solubility were analyzed. In vitro digestibility tests showed that adding fatty acids could reduce the content of hydrolyzed starch, among which the resistant starch content of the starch-oleic acid complex was the highest (54.26 %). The lower dose of electron beam irradiation could decrease the digestibility of starch and increase the content of resistant starch.


Subject(s)
Electrons , Fatty Acids , Solubility , Starch , Starch/chemistry , Fatty Acids/chemistry , Lauric Acids/chemistry , Rheology , Hydrolysis , Oleic Acid/chemistry , Lipids/chemistry
8.
Heliyon ; 10(9): e30015, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707411

ABSTRACT

Here, we presented 6 patients who were admitted to our institution and diagnosed as myasthenia gravis (MG) with tongue muscle atrophy. All these 6 patients developed symptoms of bulbar muscle weakness in acetylcholine receptor antibodies positive MG (AChR-MG) (3/6), muscle-specific receptor tyrosine kinase antibodies positive MG (MuSK-MG) (1/6), and sero-negative MG (2/6). Most of patients had "triple-furrowed" tongue except for patient 2 with irregular atrophy of tongue muscle. Tongue muscle atrophy occurs in patients with MuSK-MG, AChR-MG, and sero-negative MG. Atrophied tongue muscles of five patients with MG were reversible after immunotherapy.

9.
Nanotechnology ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38759630

ABSTRACT

Due to the suitable bandgap structure, efficient conversion rates of photon to electron, adjustable optical bandgap, high electron mobility/aspect ratio, low defects, and outstanding optical and electrical properties for device design, III-V semiconductors have shown excellent properties for optoelectronic applications, including photodiodes, photodetectors, solar cells, photocatalysis, etc. In particular, III-V nanostructures have attracted considerable interest as a promising photodetector platform, where high-performance photodetectors can be achieved based on the geometry-related light absorption and carrier transport properties of III-V materials. However, the detection range from Ultraviolet to Terahertz including broadband photodetectors of III-V semiconductors still have not been more broadly development despite significant efforts to obtain the high performance of III-V semiconductors. Therefore, the recent development of III-V photodetectors in a broad detection range from Ultraviolet to Terahertz, and future requirements are highly desired. In this review, the recent development of photodetectors based on III-V semiconductor with different detection range is discussed. First, the bandgap of III-V materials and synthesis methods of III-V nanostructures are explored, subsequently, the detection mechanism and key figures-of-merit for the photodetectors are introduced, and then the device performance and emerging applications of photodetectors are provided. Lastly, the challenges and future research directions of III-V materials for photodetectors are presented. .

10.
Sci Rep ; 14(1): 11217, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755208

ABSTRACT

Our preliminary investigation has identified the potential of serum fucosylated extracellular vesicles (EVs) miR-4732-5p in the early diagnosis of lung adenocarcinoma (LUAD) by a fucose-captured strategy utilizing lentil lectin (LCA)-magnetic beads and subsequent screening of high throughput sequencing and validation of real-time quantitative polymerase chain reaction (RT-qPCR). Considering the relatively complicated procedure, expensive equipment, and stringent laboratory condition, we have constructed an electrochemical biosensor assay for the detection of miR-4732-5p. miR-4732-5p is extremely low in serum, down to the fM level, so it needs to be detected by highly sensitive electrochemical methods based on the Mg2+-dependent DNAzyme splitting nucleic acid lock (NAL) cycle and hybridization chain reaction (HCR) signal amplification. In this study, signal amplification is achieved through the dual amplification reactions using NAL cycle in combination with HCR. In addition, hybridized DNA strands bind to a large number of methylene blue (MB) molecules to enhance signaling. Based on the above strategy, we further enhance our signal amplification strategies to improve detection sensitivity and accuracy. The implementation of this assay proceeded as follows: initially, miR-4732-5p was combined with NAL, and then Mg2+-dependent DNAzyme splitted NAL to release auxiliary DNA (S1) strands, which were subsequently captured by the immobilized capture probe DNA (C1) strands on the electrode surface. Following this, abundant quantities of DNA1 (H1) and DNA2 (H2) tandems were generated by HCR, and S1 strands then hybridized with the H1 and H2 tandems through base complementary pairing. Finally, MB was bonded to the H1 and H2 tandems through π-π stacking interaction, leading to the generation of a signal current upon the detection of a potential capable of inducing a redox change of MB by the electrode. Furthermore, we evaluated the performance of our developed electrochemical biosensor assay. The results demonstrated that our assay is a reliable approach, characterized by its high sensitivity (with a detection limit of 2.6 × 10-17 M), excellent specificity, good accuracy, reproducibility, and stability. Additionally, it is cost-effective, requires simple operation, and is portable, making it suitable for the detection of serum fucosylated extracellular vesicles miR-4732-5p. Ultimately, this development has the potential to enhance the diagnostic efficiency for patients with early-stage LUAD.


Subject(s)
Adenocarcinoma of Lung , Biosensing Techniques , Electrochemical Techniques , Extracellular Vesicles , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/blood , Biosensing Techniques/methods , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/blood , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Electrochemical Techniques/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Early Detection of Cancer/methods , Female , Male , Middle Aged
12.
J Dermatol Sci ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38749796

ABSTRACT

BACKGROUND: Ultraviolet (UV) damage is closely related to skin photoaging and many skin diseases, including dermatic tumors. N6-methyladenosine (m6A) modification is an important epigenetic regulatory mechanism. However, the role of m6A methylation in apoptosis induced by repeated UV irradiation has not been characterized. OBJECTIVE: To explore m6A methylation changes and regulatory mechanisms in the repeated UV-induced skin damage process, especially apoptosis. METHODS: HaCaT cells and BALB/c-Nu nude mice were exposed to repeated UVB/UVA+UVB irradiation. Colorimetry and flow cytometry were used to measure cellular viability and apoptosis. m6A-modified genes were detected via colorimetry and methylated RNA immunoprecipitation (MeRIP) sequencing. Methyltransferases and demethylases were detected via RT-PCR, western blotting and immunohistochemistry. Transfection of siRNA and plasmid was performed to knock down or overexpress the selected genes. RESULTS: After UVB irradiation, 861 m6A peaks were increased and 425 m6A peaks were decreased in HaCaT cells. The differentially modified genes were enriched in apoptosis-related pathways. The m6A demethylase FTO was decreased in both HaCaT cells and mouse skin after UV damage. Overexpressing FTO could improve cell viability, inhibit apoptosis and decrease RNA-m6A methylation, including LPCAT3-m6A, which increase LPCAT3 expression, cell viability promotion and apoptosis inhibition. CONCLUSION: Our study identified the cell m6A methylation change lists after repeated UVB irradiation, and revealed that FTO and LPCAT3 play key roles in the m6A methylation pathogenesis of UV-induced skin cell apoptosis. FTO-m6A-LPCAT3 might serve as a novel upstream target for preventing and treating photoaging and UV-induced skin diseases.

13.
World J Hepatol ; 16(3): 439-451, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38577529

ABSTRACT

BACKGROUND: Sterol O-acyltransferase 1 (SOAT1) is an important target in the diagnosis and treatment of liver cancer. However, the prognostic value of SOAT1 in patients with hepatocellular carcinoma (HCC) is still not clear. AIM: To investigate the correlation of SOAT1 expression with HCC, using RNA-seq and gene expression data of The Cancer Genome Atlas (TCGA)-liver hepatocellular carcinoma (LIHC) and pan-cancer. METHODS: The correlation between SOAT1 expression and HCC was analyzed. Cox hazard regression models were conducted to investigate the prognostic value of SOAT1 in HCC. Overall survival and disease-specific survival were explored based on TCGA-LIHC data. Biological processes and functional pathways mediated by SOAT1 were characterized by gene ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes. In addition, the protein-protein interaction network and co-expression analyses of SOAT1 in HCC were performed to better understand the regulatory mechanisms of SOAT1 in this malignancy. RESULTS: SOAT1 and SOAT2 were highly expressed in unpaired samples, while only SOAT1 was highly expressed in paired samples. The area under the receiver operating characteristic curve of SOAT1 expression in tumor samples from LIHC patients compared with para-carcinoma tissues was 0.748, while the area under the curve of SOAT1 expression in tumor samples from LIHC patients compared with GTEx was 0.676. Patients with higher SOAT1 expression had lower survival rates. Results from GO/KEGG and gene set enrichment analyses suggested that the PI3K/AKT signaling pathway, the IL-18 signaling pathway, the calcium signaling pathway, secreted factors, the Wnt signaling pathway, the Jak/STAT signaling pathway, the MAPK family signaling pathway, and cell-cell communication were involved in such association. SOAT1 expression was positively associated with the abundance of macrophages, Th2 cells, T helper cells, CD56bright natural killer cells, and Th1 cells, and negatively linked to the abundance of Th17 cells, dendritic cells, and cytotoxic cells. CONCLUSION: Our findings demonstrate that SOAT1 may serve as a novel target for HCC treatment, which is helpful for the development of new strategies for immunotherapy and metabolic therapy.

14.
Exp Hematol Oncol ; 13(1): 37, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570883

ABSTRACT

Adoptive immunotherapy in the T cell landscape exhibits efficacy in cancer treatment. Over the past few decades, genetically modified T cells, particularly chimeric antigen receptor T cells, have enabled remarkable strides in the treatment of hematological malignancies. Besides, extensive exploration of multiple antigens for the treatment of solid tumors has led to clinical interest in the potential of T cells expressing the engineered T cell receptor (TCR). TCR-T cells possess the capacity to recognize intracellular antigen families and maintain the intrinsic properties of TCRs in terms of affinity to target epitopes and signal transduction. Recent research has provided critical insight into their capability and therapeutic targets for multiple refractory solid tumors, but also exposes some challenges for durable efficacy. In this review, we describe the screening and identification of available tumor antigens, and the acquisition and optimization of TCRs for TCR-T cell therapy. Furthermore, we summarize the complete flow from  laboratory to clinical applications of TCR-T cells. Last, we emerge future prospects for improving therapeutic efficacy in cancer world with combination therapies or TCR-T derived products. In conclusion, this review depicts our current understanding of TCR-T cell therapy in solid neoplasms, and provides new perspectives for expanding its clinical applications and improving therapeutic efficacy.

16.
Nat Commun ; 15(1): 3097, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600111

ABSTRACT

The chemical transformations of methane (CH4) and carbon dioxide (CO2) greenhouse gases typically have high energy barriers. Here we present an approach of strategic coupling of CH4 oxidation and CO2 reduction in a switched microbial process governed by redox cycling of iron minerals under temperate conditions. The presence of iron minerals leads to an obvious enhancement of carbon fixation, with the minerals acting as the electron acceptor for CH4 oxidation and the electron donor for CO2 reduction, facilitated by changes in the mineral structure. The electron flow between the two functionally active microbial consortia is tracked through electrochemistry, and the energy metabolism in these consortia is predicted at the genetic level. This study offers a promising strategy for the removal of CH4 and CO2 in the natural environment and proposes an engineering technique for the utilization of major greenhouse gases.


Subject(s)
Greenhouse Gases , Greenhouse Gases/analysis , Carbon Dioxide/analysis , Oxidation-Reduction , Iron , Methane/metabolism , Minerals
17.
J Exp Clin Cancer Res ; 43(1): 123, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654325

ABSTRACT

BACKGROUND: Aberrant fucosylation observed in cancer cells contributes to an augmented release of fucosylated exosomes into the bloodstream, where miRNAs including miR-4732-3p hold promise as potential tumor biomarkers in our pilot study. However, the mechanisms underlying the sorting of miR-4732-3p into fucosylated exosomes during lung cancer progression remain poorly understood. METHODS: A fucose-captured strategy based on lentil lectin-magnetic beads was utilized to isolate fucosylated exosomes and evaluate the efficiency for capturing tumor-derived exosomes using nanoparticle tracking analysis (NTA). Fluorescence in situ hybridization (FISH) and qRT-PCR were performed to determine the levels of miR-4732-3p in non-small cell lung cancer (NSCLC) tissue samples. A co-culture system was established to assess the release of miRNA via exosomes from NSCLC cells. RNA immunoprecipitation (RIP) and miRNA pull-down were applied to validate the interaction between miR-4732-3p and heterogeneous nuclear ribonucleoprotein K (hnRNPK) protein. Cell functional assays, cell derived xenograft, dual-luciferase reporter experiments, and western blot were applied to examine the effects of miR-4732-3p on MFSD12 and its downstream signaling pathways, and the impact of hnRNPK in NSCLC. RESULTS: We enriched exosomes derived from NSCLC cells using the fucose-captured strategy and detected a significant upregulation of miR-4732-3p in fucosylated exosomes present in the serum, while its expression declined in NSCLC tissues. miR-4732-3p functioned as a tumor suppressor in NSCLC by targeting 3'UTR of MFSD12, thereby inhibiting AKT/p21 signaling pathway to induce cell cycle arrest in G2/M phase. NSCLC cells preferentially released miR-4732-3p via exosomes instead of retaining them intracellularly, which was facilitated by the interaction of miR-4732-3p with hnRNPK protein for selective sorting into fucosylated exosomes. Moreover, knockdown of hnRNPK suppressed NSCLC cell proliferation, with the elevated levels of miR-4732-3p in NSCLC tissues but the decreased expression in serum fucosylated exosomes. CONCLUSIONS: NSCLC cells escape suppressive effects of miR-4732-3p through hnRNPK-mediated sorting of them into fucosylated exosomes, thus supporting cell malignant properties and promoting NSCLC progression. Our study provides a promising biomarker for NSCLC and opens a novel avenue for NSCLC therapy by targeting hnRNPK to prevent the "exosome escape" of tumor-suppressive miR-4732-3p from NSCLC cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Exosomes , Fucose , Heterogeneous-Nuclear Ribonucleoprotein K , Lung Neoplasms , MicroRNAs , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Glycosylation , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Exosomes/metabolism , MicroRNAs/blood , MicroRNAs/metabolism , Genes, Tumor Suppressor , Fucose/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Down-Regulation , Animals , Mice , Mice, Nude , Cell Proliferation , Cell Cycle Checkpoints , Membrane Proteins/analysis , Membrane Proteins/genetics , Membrane Proteins/metabolism , Prognosis , Signal Transduction , Disease Progression , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood
18.
Front Pharmacol ; 15: 1380277, 2024.
Article in English | MEDLINE | ID: mdl-38628645

ABSTRACT

Essential oils are potential alternatives to antibiotics for preventing Candida albicans (C. albicans) infection which is responsible for economic losses in the pigeon industry. Cymbopogon martini essential oil (EO) can inhibit pathogens, particularly fungal pathogens but its potential beneficial effects on C. albicans-infected pigeons remain unclear. Therefore, we investigated the impact of C. martini EO on antioxidant activity, immune response, intestinal barrier function, and intestinal microbiota in C. albicans-infected pigeons. The pigeons were divided into four groups as follows: (1) NC group: C. albicans uninfected/C. martini EO untreated group; (2) PC group: C. albicans infected/C. martini EO untreated group; (3) LPA group: C. albicans infected/1% C. martini EO treated group; and (4) HPA group: C. albicans infected/2% C. martini EO treated group. The pigeons were infected with C. albicans from day of age 35 to 41 and treated with C. martini EO from day of age 42 to 44, with samples collected on day of age 45 for analysis. The results demonstrated that C. martini EO prevented the reduction in the antioxidant enzymes SOD and GSH-Px causes by C. albicans challenge in pigeons. Furthermore, C. martini EO could decrease the relative expression of IL-1ß, TGF-ß, and IL-8 in the ileum, as well as IL-1ß and IL-8 in the crop, while increasing the relative expression of Claudin-1 in the ileum and the crop and Occludin in the ileum in infected pigeons. Although the gut microbiota composition was not significantly affected by C. martini EO, 2% C. martini EO increased the abundance of Alistipes and Pedobacter. In conclusion, the application of 2% C. martini EO not only enhanced the level of antioxidant activity and the expression of genes related to intestinal barrier function but also inhibited inflammatory genes in C. albicans-infected pigeons and increased the abundance of gut bacteria that are resistant to C. albicans.

19.
JMIR Med Educ ; 10: e52483, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598263

ABSTRACT

ChatGPT (OpenAI), a cutting-edge natural language processing model, holds immense promise for revolutionizing medical education. With its remarkable performance in language-related tasks, ChatGPT offers personalized and efficient learning experiences for medical students and doctors. Through training, it enhances clinical reasoning and decision-making skills, leading to improved case analysis and diagnosis. The model facilitates simulated dialogues, intelligent tutoring, and automated question-answering, enabling the practical application of medical knowledge. However, integrating ChatGPT into medical education raises ethical and legal concerns. Safeguarding patient data and adhering to data protection regulations are critical. Transparent communication with students, physicians, and patients is essential to ensure their understanding of the technology's purpose and implications, as well as the potential risks and benefits. Maintaining a balance between personalized learning and face-to-face interactions is crucial to avoid hindering critical thinking and communication skills. Despite challenges, ChatGPT offers transformative opportunities. Integrating it with problem-based learning, team-based learning, and case-based learning methodologies can further enhance medical education. With proper regulation and supervision, ChatGPT can contribute to a well-rounded learning environment, nurturing skilled and knowledgeable medical professionals ready to tackle health care challenges. By emphasizing ethical considerations and human-centric approaches, ChatGPT's potential can be fully harnessed in medical education, benefiting both students and patients alike.


Subject(s)
Education, Medical , Physicians , Students, Medical , Humans , Learning , Clinical Reasoning
20.
BMC Nephrol ; 25(1): 125, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589792

ABSTRACT

BACKGROUND: Sepsis and acute kidney injury (AKI) are common severe diseases in the intensive care unit (ICU). This study aimed to estimate the attributable mortality of AKI among critically ill patients with sepsis and to assess whether AKI was an independent risk factor for 30-day mortality. METHODS: The information we used was derived from a multicenter prospective cohort study conducted in 18 Chinese ICUs, focusing on septic patients post ICU admission. The patients were categorized into two groups: those who developed AKI (AKI group) within seven days following a sepsis diagnosis and those who did not develop AKI (non-AKI group). Using propensity score matching (PSM), patients were matched 1:1 as AKI and non-AKI groups. We then calculated the mortality rate attributable to AKI in septic patients. Furthermore, a survival analysis was conducted comparing the matched AKI and non-AKI septic patients. The primary outcome of interest was the 30-day mortality rate following the diagnosis of sepsis. RESULTS: Out of the 2175 eligible septic patients, 61.7% developed AKI. After the application of PSM, a total of 784 septic patients who developed AKI were matched in a 1:1 ratio with 784 septic patients who did not develop AKI. The overall 30-day attributable mortality of AKI was 6.6% (95% CI 2.3 ∼ 10.9%, p = 0.002). A subgroup analysis revealed that the 30-day attributable mortality rates for stage 1, stage 2, and stage 3 AKI were 0.6% (95% CI -5.9 ∼ 7.2%, p = 0.846), 4.7% (95% CI -3.1 ∼ 12.4%, p = 0.221) and 16.8% (95% CI 8.1 ∼ 25.2%, p < 0.001), respectively. Particularly noteworthy was that stage 3 AKI emerged as an independent risk factor for 30-day mortality, possessing an adjusted hazard ratio of 1.80 (95% CI 1.31 ∼ 2.47, p < 0.001). CONCLUSIONS: The overall 30-day attributable mortality of AKI among critically ill patients with sepsis was 6.6%. Stage 3 AKI had the most significant contribution to 30-day mortality, while stage 1 and stage 2 AKI did not increase excess mortality.


Subject(s)
Acute Kidney Injury , Sepsis , Humans , Retrospective Studies , Prospective Studies , Critical Illness , Acute Kidney Injury/diagnosis , Intensive Care Units , Sepsis/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...