Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Med (Lausanne) ; 11: 1434105, 2024.
Article in English | MEDLINE | ID: mdl-39296904

ABSTRACT

Background: Maternal obesity significantly influences fetal development and health later in life; however, the molecular mechanisms behind it remain unclear. This study aims to investigate signature genes related to maternal obesity and fetal programming based on a genomic-wide transcriptional placental study using a combination of different bioinformatics tools. Methods: The dataset (GSE128381) was obtained from Gene Expression Omnibus (GEO). The data of 100 normal body mass index (BMI) and 27 obese mothers were included in the analysis. Differentially expressed genes (DEGs) were evaluated by limma package. Thereafter, functional enrichment analysis was implemented. Then, weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) analysis were used to further screening of signature genes. Simple linear regression analysis was used to assess the correlation between signature genes and newborn birth weight. Gene set enrichment analysis (GSEA) was implemented to study signaling pathways related to signature genes. The expression of the signature genes was also explored in 48 overweight mothers in the same dataset. Results: A total of 167 DEGs were obtained, of which 122 were up-regulated while 45 were down-regulated. The dataset was then clustered into 11 modules by WGCNA, and the MEbrown was found as the most significant module related to maternal obesity and fetal programming (cor = 0.2, p = 0.03). The LASSO analysis showed that PTX3, NCF2, HOXB5, ABCA6, and C1orf162 are signature genes related to maternal obesity and fetal programming, which were increased in the placenta of obese mothers compared to those with normal BMI. The area under the curve (AUC) of the signature genes in the receiver operating characteristic curve (ROC) was 0.709, 0.660, 0.674, 0.667, and 0.717, respectively. Simple linear regression analysis showed that HOXB5 was associated with newborn birth weight. GSEA analysis revealed that these signature genes positively participate in various signaling pathways/functions in the placenta. Conclusion: PTX3, NCF2, HOXB5, ABCA6, and C1orf162 are novel signature genes related to maternal obesity and fetal programming, of which HOXB5 is implicated in newborn birth weight.

2.
Environ Int ; 187: 108729, 2024 May.
Article in English | MEDLINE | ID: mdl-38735077

ABSTRACT

Due to the specific action on bacterial cell wall, ß-lactam antibiotics have gained widespread usage as they exhibit a high degree of specificity in targeting bacteria, but causing minimal toxicity to host cells. Under antibiotic pressure, bacteria may opt to shed their cell walls and transform into L-form state as a means to evade the antibiotic effects. In this study, we explored and identified diverse optimal conditions for both Gram-negative bacteria (E. coli DH5α (CTX)) and Gram-positive bacteria (B. subtilis ATCC6633), which were induced to L-form bacteria using lysozyme (0.5 ppm) and meropenem (64 ppm). Notably, when bacteria transformed into L-form state, both bacterial strains showed varying degrees of increased resistance to antibiotics polymyxin E, meropenem, rifampicin, and tetracycline. E. coli DH5α (CTX) exhibited the most significant enhancement in resistance to tetracycline, with a 128-fold increase, while B. subtilis ATCC6633 showed a 32-fold increase in resistance to tetracycline and polymyxin E. Furthermore, L-form bacteria maintained their normal metabolic activity, combined with enhanced oxidative stress, served as an adaptive strategy promoting the sustained survival of L-form bacteria. This study provided a theoretical basis for comprehending antibiotic resistance mechanisms, developing innovative treatment strategies, and confronting global antibiotic resistance challenges.


Subject(s)
Anti-Bacterial Agents , Bacillus subtilis , Escherichia coli , Oxidative Stress , Anti-Bacterial Agents/pharmacology , Oxidative Stress/drug effects , Escherichia coli/drug effects , Bacillus subtilis/drug effects , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Tetracycline/pharmacology , Meropenem/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL