Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Inflamm Res ; 73(6): 961-978, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38587531

ABSTRACT

BACKGROUND: Atherosclerosis is a chronic inflammatory disease characterized by abnormal lipid deposition in the arteries. Programmed cell death is involved in the inflammatory response of atherosclerosis, but PANoptosis, as a new form of programmed cell death, is still unclear in atherosclerosis. This study explored the key PANoptosis-related genes involved in atherosclerosis and their potential mechanisms through bioinformatics analysis. METHODS: We evaluated differentially expressed genes (DEGs) and immune infiltration landscape in atherosclerosis using microarray datasets and bioinformatics analysis. By intersecting PANoptosis-related genes from the GeneCards database with DEGs, we obtained a set of PANoptosis-related genes in atherosclerosis (PANoDEGs). Functional enrichment analysis of PANoDEGs was performed and protein-protein interaction (PPI) network of PANoDEGs was established. The machine learning algorithms were used to identify the key PANoDEGs closely linked to atherosclerosis. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic potency of key PANoDEGs. CIBERSORT was used to analyze the immune infiltration patterns in atherosclerosis, and the Spearman method was used to study the relationship between key PANoDEGs and immune infiltration abundance. The single gene enrichment analysis of key PANoDEGs was investigated by GSEA. The transcription factors and target miRNAs of key PANoDEGs were predicted by Cytoscape and online database, respectively. The expression of key PANoDEGs was validated through animal and cell experiments. RESULTS: PANoDEGs in atherosclerosis were significantly enriched in apoptotic process, pyroptosis, necroptosis, cytosolic DNA-sensing pathway, NOD-like receptor signaling pathway, lipid and atherosclerosis. Four key PANoDEGs (ZBP1, SNHG6, DNM1L, and AIM2) were found to be closely related to atherosclerosis. The ROC curve analysis demonstrated that the key PANoDEGs had a strong diagnostic potential in distinguishing atherosclerotic samples from control samples. Immune cell infiltration analysis revealed that the proportion of initial B cells, plasma cells, CD4 memory resting T cells, and M1 macrophages was significantly higher in atherosclerotic tissues compared to normal tissues. Spearman analysis showed that key PANoDEGs showed strong correlations with immune cells such as T cells, macrophages, plasma cells, and mast cells. The regulatory networks of the four key PANoDEGs were established. The expression of key PANoDEGs was verified in further cell and animal experiments. CONCLUSIONS: This study evaluated the expression changes of PANoptosis-related genes in atherosclerosis, providing a reference direction for the study of PANoptosis in atherosclerosis and offering potential new avenues for further understanding the pathogenesis and treatment strategies of atherosclerosis.


Subject(s)
Atherosclerosis , Gene Expression Profiling , Atherosclerosis/genetics , Atherosclerosis/immunology , Animals , Protein Interaction Maps/genetics , Transcriptome , Humans , Computational Biology , Male , Pyroptosis/genetics , Mice
2.
J Ethnopharmacol ; 328: 117956, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38428658

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chinese herbal medicine Gegen Qinlian Decoction (GQD) has been clinically shown to be an effective treatment of ulcerative colitis (UC) in China. However, the underlying mechanism of GQD's anti-ulcerative colitis properties and its effect on gut microbiota still deserve further exploration. AIM OF THE STUDY: This study observed the regulatory effects of GQD on Th2/Th1 and Tregs/Th17 cells balance, the NOD-like receptor family pyrin domain containing 3 (NLRP3) infammasome and gut microbiota in TNBS-induced UC in BALB/c mice. MATERIALS AND METHODS: 61 main chemical compounds in the GQD were determined by UPLC-Q-TOF/MS. The UC BALB/c model was established by intrarectal administration of trinitrobenzene sulfonic acid (TNBS), and GQD was orally administered at low and high dosages of 2.96 and 11.83 g/kg/day, respectively. The anti-inflammatory effects of GQD for ulcerative colitis were evaluated by survival rate, body weight, disease activity index (DAI) score, colonic weight and index, spleen index, hematoxylin-eosin (HE) staining and histopathological scores. Flow cytometry was used to detect the percentage of CD4, Th1, Th2, Th17 and Tregs cells. The levels of Th1-/Th2-/Th17-/Tregs-related inflammatory cytokines and additional proinflammatory cytokines (IL-1ß, IL-18) were detected by CBA, ELISA, and RT-PCR. The expressions of GATA3, T-bet, NLRP3, Caspase-1, IL-Iß, Occludin and Zonula occludens-1 (ZO-1) on colon tissues were detected by Western blot and RT-PCR. Transcriptome sequencing was performed using colon tissue and 16S rRNA gene sequencing was performed on intestinal contents. Fecal microbiota transplantation (FMT) was employed to assess the contribution of intestinal microbiota and its correlation with CD4 T cells and the NLRP3 inflammasome. RESULTS: GQD increased the survival rate of TNBS-induced UC in BALB/c mice, and significantly improved their body weight, DAI score, colonic weight and index, spleen index, and histological characteristics. The intestinal barrier dysfunction was repaired after GQD administration through promoting the expression of tight junction proteins (Occludin and ZO-1). GQD restored the balance of Th2/Th1 and Tregs/Th17 cells immune response of colitis mice, primarily inhibiting the increase in Th2/Th1 ratio and their transcription factor production (GATA3 and T-bet). Morever, GQD changed the secretion of Th1-/Th2-/Th17-/Tregs-related cytokines (IL-2, IL-12, IL-5, IL-13, IL-6, IL-10, and IL-17A) and reduced the expressions of IL-1ß, IL-18. Transcriptome results suggested that GQD could also remodel the immune inflammatory response of colitis by inhibiting NOD-like receptor signaling pathway, and Western blot, immunohistochemistry and RT-PCR further revealed that GQD exerted anti-inflammatory effects by inhibiting the NLRP3 inflammasome, such as down-regulating the expression of NLRP3, Caspase-1 and IL-1ß. More interestingly, GQD regulated gut microbiota dysbiosis, suppressed the overgrowth of conditional pathogenic gut bacteria like Helicobacter, Proteobacteria, and Mucispirillum, while the probiotic gut microbiota, such as Lactobacillus, Muribaculaceae, Ruminiclostridium_6, Akkermansia, and Ruminococcaceae_unclassified were increased. We further confirmed that GQD-treated gut microbiota was sufficient to relieve TNBS-induced colitis by FMT, involving the modulation of Th2/Th1 and Tregs/Th17 balance, inhibition of NLRP3 inflammasome activation, and enhancement of colonic barrier function. CONCLUSIONS: GQD might alleviate TNBS-induced UC via regulating Th2/Th1 and Tregs/Th17 cells Balance, inhibiting NLRP3 inflammasome and reshaping gut microbiota, which may provide a novel strategy for patients with colitis.


Subject(s)
Colitis, Ulcerative , Colitis , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Humans , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Drugs, Chinese Herbal/adverse effects , Inflammasomes/metabolism , Interleukin-18/metabolism , Interleukin-18/pharmacology , Interleukin-18/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Th17 Cells , Occludin/metabolism , RNA, Ribosomal, 16S/metabolism , Mice, Inbred CBA , Colitis/drug therapy , Cytokines/metabolism , Trinitrobenzenes/metabolism , Trinitrobenzenes/pharmacology , Trinitrobenzenes/therapeutic use , Anti-Inflammatory Agents/pharmacology , Body Weight , Caspases/metabolism , Disease Models, Animal , Colon
3.
ACS Appl Mater Interfaces ; 16(8): 10746-10755, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38351572

ABSTRACT

Merging textiles with advanced energy harvesting technology via triboelectric effects brings novel insights into self-powered wearable textile electronics. However, fabrication of a comfortable textile-based triboelectric nanogenerator (TENG) with high outputs remains challenging. Herein, we propose a highly flexible, tailorable, single-electrode all-textile TENG (t-TENG) with both wear comfort and high outputs. A dielectric modulated porous composite coating containing poly(vinylidene fluoride)-hexafluoropropylene copolymer and barium titanate nanoparticles is constructed on conductive fabric to counterpart with highly positive glass fiber fabric through knotted yarn bonding, maintaining the superiority of textiles and strong triboelectricity. Through the synergistic optimization of charge storage via dielectric modulation and charge dissipation offset by electrical poling, remarkable outputs (261 V, 1.5 µA, and 12.7 nC) are obtained from a miniaturized, lightweight t-TENG (2 × 2 cm2, 130 mg) with an instantaneous power density of 654.48 mW·m-2, as well as excellent electrical robustness and device durability over 20,000 cycles. The t-TENG also exhibits a high sensitivity of 3.438 V·kPa-1 in the force region (1-10 N), demonstrating great potential in TENG-based intelligent sports sensing applications for monitoring and correcting the basketball shooting hand and foot arch posture. Furthermore, over 110 light-emitting diode arrays can be lightened up by gently tapping this miniaturized t-TENG. It also offers a wearable power source scheme through integrating the single-electrode device into clothing and utilizing the skin as the grounded electrode, revealing its ease of integration and biomechanical energy harvesting capability. This work provides an attractive paradigm for next-generation textile electronics with well-balanced device performance and wear comfort.

4.
Mol Immunol ; 166: 29-38, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218080

ABSTRACT

C1s enzyme (active C1s) is a subunit of the complement C1 complex that cleaves low-density lipoprotein receptor-related proteins 5 and 6, leading to Wnt/ß-catenin pathway activation in some cell lines. Macrophages have two major functional polarization states (the classically activated M1 state and the alternatively activated M2 state) and play an essential role in atherosclerosis. An increasing amount of evidence suggests that canonical Wnt signaling is related to macrophage polarization. In this study, we explored the cytoprotective effects of C1s enzyme in macrophages. The results show that C1s enzyme activates canonical Wnt signaling in macrophages, exacerbates macrophage M2 polarization, and inhibits M1 polarization. Moreover, C1s enzyme reduces foam cell formation and simultaneously enhances efferocytosis. This study reveals a novel function of C1s enzyme in macrophages in the context of atherosclerosis.


Subject(s)
Atherosclerosis , Complement C1s , Macrophages , Wnt Signaling Pathway , Humans , Atherosclerosis/metabolism , beta Catenin/metabolism , Foam Cells/metabolism , Macrophages/metabolism , Complement C1s/metabolism
5.
Foods ; 12(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38137202

ABSTRACT

The structural characteristics and anti-inflammatory activity of Tremella fuciformis polysaccharides (TFPs) were investigated. The study showed that TFPs were mainly composed of mannose, rhamnose, glucuronic acid, glucose, galactose, xylose, and fucose. TFPs significantly inhibited monosodium urate (MSU)-induced inflammation of RAW264.7 cells, as well as the secretion levels of TNF-α, IL-1ß, and IL-18 cytokines. The concentrations of malondialdehyde and reactive oxygen species in RAW264.7 macrophages were reduced, but superoxide dismutase activity was increased. RNA-Seq technology was applied to explore the mechanisms of TFPs ameliorating MSU-induced inflammation of RAW264.7 macrophages. Results revealed that TFPs significantly reduce MSU-stimulated inflammatory damage in RAW 264.7 cells by inhibiting signaling pathways like the hypoxia inducible factor-1 (HIF-1) signaling pathway and erythroblastic oncogene B (ErbB) signaling pathway. This study provides a foundation for TFPs to be developed as novel anti-inflammatory drugs.

6.
J Hazard Mater ; 460: 132407, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37651934

ABSTRACT

Municipal solid waste treatment (MSWT) system emits a cocktail of microorganisms that jeopardize environmental and public health. However, the dynamics and risks of airborne microbiota associated with MSWT are poorly understood. Here, we analyzed the bacterial community of inhalable air particulates (PM10, n = 71) and the potentially exposed on-site workers' throat swabs (n = 30) along with waste treatment chain in Shanghai, the largest city of China. Overall, the airborne bacteria varied largely in composition and abundance during the treatment (P < 0.05), especially in winter. Compared to the air conditions, MSWT-sources that contributed to 15 ∼ 70% of airborne bacteria more heavily influenced the PM10-laden bacterial communities (PLS-SEM, ß = 0.40, P < 0.05). Moreover, our year-span analysis found PM10 as an important media spreading pathogens (104 ∼ 108 copies/day) into on-site workers. The machine-learning identified Lactobacillus and Streptococcus as pharynx-niched featured biomarker in summer and Rhodococcus and Capnocytophaga in winter (RandomForest, ntree = 500, mtry = 10, cross = 10, OOB = 0%), which closely related to their airborne counterparts (Procrustes test, P < 0.05), suggesting that MSWT a dynamic hotspot of airborne bacteria with the pronounced inhalable risks to the neighboring communities.


Subject(s)
Bacteria , Solid Waste , Humans , China , Dust , Machine Learning
7.
Gut Microbes ; 15(1): 2221485, 2023.
Article in English | MEDLINE | ID: mdl-37345844

ABSTRACT

Current evidence indicates that the next-generation probiotic Akkermansia muciniphila (A. muciniphila) has therapeutic potential for nonalcoholic fatty liver disease (NAFLD), especially its inflammatory stage known as nonalcoholic steatohepatitis (NASH). However, the mechanisms of A. muciniphila in NASH prevention remain unknown. Here, A. muciniphila supplementation prevented hepatic inflammation in high-fat diet-induced NASH mice, characterized by reduced hepatic proinflammatory macrophages (M1) and γδT and γδT17 cells. Consistently, hepatic M1 and γδT cells were enriched in biopsy-proven NASH patients and high-fat/high-carbohydrate diet-induced NASH mice. Antibiotics reduced hepatic M1, γδT and γδT17 cells in NASH mice. Furthermore, A. muciniphila inhibited intestinal barrier disruption and accordingly downregulated hepatic Toll-like receptor 2 (TLR2) expression in NASH mice. The activation of TLR2 by lipoteichoic acid enriched hepatic γδT17 cells (not M1) in normal diet-fed mice and neutralized the γδT cell-lowering and liver inflammation-protecting effects of A. muciniphila in NASH mice. Additionally, activated γδT cells could promote macrophage polarization via IL-17. Our study first supported that A. muciniphila prevented NASH by modulating TLR2-activated γδT17 cells and further macrophage polarization, facilitating clinical therapeutic applications.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Animals , Mice , Toll-Like Receptor 2/genetics , Verrucomicrobia , Inflammation , Macrophages
8.
BMC Med Genomics ; 16(1): 100, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37173673

ABSTRACT

BACKGROUND: Atherosclerosis is the main pathological change in atherosclerotic cardiovascular disease, and its underlying mechanisms are not well understood. The aim of this study was to explore the hub genes involved in atherosclerosis and their potential mechanisms through bioinformatics analysis. METHODS: Three microarray datasets from Gene Expression Omnibus (GEO) identified robust differentially expressed genes (DEGs) by robust rank aggregation (RRA). We performed connectivity map (CMap) analysis and functional enrichment analysis on robust DEGs and constructed a protein‒protein interaction (PPI) network using the STRING database to identify the hub gene using 12 algorithms of cytoHubba in Cytoscape. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic potency of the hub genes.The CIBERSORT algorithm was used to perform immunocyte infiltration analysis and explore the association between the identified biomarkers and infiltrating immunocytes using Spearman's rank correlation analysis in R software. Finally, we evaluated the expression of the hub gene in foam cells. RESULTS: A total of 155 robust DEGs were screened by RRA and were revealed to be mainly associated with cytokines and chemokines by functional enrichment analysis. CD52 and IL1RN were identified as hub genes and were validated in the GSE40231 dataset. Immunocyte infiltration analysis showed that CD52 was positively correlated with gamma delta T cells, M1 macrophages and CD4 memory resting T cells, while IL1RN was positively correlated with monocytes and activated mast cells. RT-qPCR results indicate that CD52 and IL1RN were highly expressed in foam cells, in agreement with bioinformatics analysis. CONCLUSIONS: ​This study has established that CD52 and IL1RN may play a key role in the occurrence and development of atherosclerosis, which opens new lines of thought for further research on the pathogenesis of atherosclerosis.


Subject(s)
Atherosclerosis , Humans , Atherosclerosis/diagnosis , Atherosclerosis/genetics , Algorithms , CD4-Positive T-Lymphocytes , Computational Biology , Cytokines , Gene Expression Profiling
10.
Dalton Trans ; 52(24): 8294-8301, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37255020

ABSTRACT

A thermally tunable terahertz window based on the combination of a metamaterial and the phase change material VO2 is proposed. The window is composed of two vanadium oxide films with a SiO2 layer sandwiched between them. The thermochromic phase change properties of VO2 are the key to the functionality of the window. By controlling the temperature around the room temperature of 300 K, our material can be used as a smart window and it is able to regulate both the absorption and transmission of external terahertz waves in response to changes in temperature. The absorbance can be regulated by more than 90% and the transmittance by more than 80%. The switching characteristics of the window are explained by the insulator-metal transition that vanadium oxide undergoes during the heating process, while localized surface plasmon resonance explains the perfect absorption. In addition, the designed window is not only insensitive to polarised waves, but is thermally flexible and maintains excellent performance over a wide angular range of 0° to 40°. This design will have significant potential for applications in stealth technologies, thermal sensing and switching, and terahertz energy harvesting.

12.
Mediators Inflamm ; 2023: 8130422, 2023.
Article in English | MEDLINE | ID: mdl-37181804

ABSTRACT

Objective: To analyze the influencing factors of tumor volume, body immunity, and poor prognosis after 125I particle therapy for differentiated thyroid cancer. Methods: A total of 104 patients with differentiated TC who were treated with 125I particles during January 2020 to January 2021 was picked. These subjects were graded as low-dose group (80Gy-110Gy) and high-dose group (110Gy-140Gy) according to the minimum dose received by 90% of the target volume (D90) after surgery. The tumor volume before and after treatment was compared, and fasting venous blood was collected before and after treatment. The content of thyroglobulin (Tg) was detected by electrochemiluminescence immunoassay. The levels of absolute lymphocyte count (ALC), lymphocytes, neutrophils, and monocytes were detected on automatic blood cell analyzer. The lymphocyte to monocyte ratio (LMR), neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ration (PLR) were calculated. The changes in the condition of patients were closely observed, and the occurrence of adverse reactions in the two groups were compared. The risk factors influencing the efficacy of 125I particle therapy for differentiated TC were analyzed through multivariate logistic regression analysis. Results: The total effective rate of patients in the low- and high-dose groups was 78.85% and 82.69%, respectively (P > 0.05). Compared with the pretreatment period, the tumor volume and Tg level in both groups were much lower (P < 0.05), and the differences in tumor volume and Tg level had no statistically significant difference between the two groups before and after treatment (P > 0.05). At 1 week of the treatment, the total incidence of adverse reactions such as nausea, radiation gastritis, radiation parotitis, and neck discomfort was obviously higher in the high-dose group than in the low-dose group (P < 0.05). At 1 month of treatment, the incidence of adverse reactions such as nausea was markedly higher in the high-dose group than in the low-dose group (P < 0.05). After treatment, serum NLR and PLR contents were memorably elevated and LMR level was sharply decreased in both groups, and serum NLR and PLR contents were higher and LMR content was lower in the high-dose group than in the low-dose group (P < 0.05). Multivariate logistic regression analysis showed that the pathological type of follicular adenocarcinoma, tumor size ≥ 2 cm, clinical stage of III~IV, distant metastasis, and high TSH level before 125I particle treatment were all risk factors related to the efficacy of 125I particle treatment of TC (P < 0.05). Conclusion: The efficacy of low-dose and high-dose 125I particles in the treatment of differentiated thyroid cancer is comparable, among which low-dose 125I particles have fewer adverse effects and have less impact on the immunity of the body, which is well tolerated by patients and can be widely used in clinical practice. In addition, the pathological type of follicular adenocarcinoma, tumor size ≥ 2 cm, clinical stage III~IV, distant metastasis, and high TSH level before 125I particle treatment are all risk factors that affect the poor effect of 125I particles on thyroid cancer treatment, and early monitoring of the above index changes can help evaluate the prognosis.


Subject(s)
Adenocarcinoma, Follicular , Thyroid Neoplasms , Humans , Tumor Burden , Lymphocytes , Prognosis , Thyroid Neoplasms/radiotherapy , Neutrophils , Blood Platelets , Monocytes , Retrospective Studies , Thyrotropin
13.
Angew Chem Int Ed Engl ; 62(25): e202303069, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37068049

ABSTRACT

Aziridines are highly valued synthetic targets in organic and medicinal chemistry. The organocatalytic synthesis of such structures with broad substrate scope and good diastereoselectivity, however, is rare. Herein, we report a broadly applicable and diastereoselective synthetic method for the synthesis of trans-aziridines from imines and benzylic or alkyl halides utilizing sulfenate anions (PhSO- ) as the catalyst. Substrates bearing heterocyclic aromatic groups, alkyl, and electron-rich and electron-poor aryl groups were shown to be compatible with this method (33 examples), giving good yields and high diastereoselectivities (trans : cis >20 : 1). Further functionalization of aziridines containing cyclopropyl or cyclobutyl groups was achieved through ring-opening reactions, with a cyclobutyl-substituted norephedrine derivative obtained through a four-step synthesis. We offer a mechanistic proposal involving reversible addition of the deprotonated benzyl sulfoxide to the imine to explain the high trans-diastereoselectivity.


Subject(s)
Aziridines , Aziridines/chemistry , Anions/chemistry , Imines/chemistry , Catalysis , Stereoisomerism
14.
Foods ; 12(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37107464

ABSTRACT

Blanching is a critical step in the processing of Tremella fuciformis (T. fuciformis). The effects of different blanching methods (boiling water blanching (BWB), ultrasonic-low temperature blanching (ULTB), and high-temperature steam (HTS)) on the quality and moisture migration characteristics of T. fuciformis were investigated. The results showed that the T. fuciformis blanched by ULTB (70 °C, 2 min, 40 kHz, 300 W) had the best quality, including a brighter appearance, superior texture, and good sensory features, with a polysaccharide content of 3.90 ± 0.02%. The moisture migration characteristics of T. fuciformis after blanching exhibited four peaks, displayed strong and weak chemically bound water, immobilized water, and free water, whereas ULTB had a weak effect on the freedom of water in T. fuciformis. The study will provide the foundation for the factory processing of T. fuciformis.

16.
Front Cell Infect Microbiol ; 13: 1110787, 2023.
Article in English | MEDLINE | ID: mdl-36926517

ABSTRACT

Recovery from gastrointestinal (GI) surgery is often interrupted by the unpredictable occurrence of postoperative complications, including infections, anastomotic leak, GI dysmotility, malabsorption, cancer development, and cancer recurrence, in which the implication of gut microbiota is beginning to emerge. Gut microbiota can be imbalanced before surgery due to the underlying disease and its treatment. The immediate preparations for GI surgery, including fasting, mechanical bowel cleaning, and antibiotic intervention, disrupt gut microbiota. Surgical removal of GI segments also perturbs gut microbiota due to GI tract reconstruction and epithelial barrier destruction. In return, the altered gut microbiota contributes to the occurrence of postoperative complications. Therefore, understanding how to balance the gut microbiota during the perioperative period is important for surgeons. We aim to overview the current knowledge to investigate the role of gut microbiota in recovery from GI surgery, focusing on the crosstalk between gut microbiota and host in the pathogenesis of postoperative complications. A comprehensive understanding of the postoperative response of the GI tract to the altered gut microbiota provides valuable cues for surgeons to preserve the beneficial functions and suppress the adverse effects of gut microbiota, which will help to enhance recovery from GI surgery.


Subject(s)
Digestive System Surgical Procedures , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/surgery , Anti-Bacterial Agents/therapeutic use , Postoperative Complications
17.
Article in Chinese | MEDLINE | ID: mdl-36843524

ABSTRACT

Objective:To explore the normal reference range of Click-ABR latency and interwave period in 0-6 years old children, and to analyze the clinical characteristics of Click-ABR in children with sound transmission function is abnormal. Methods:A total of 1791(3582 ears) normal hearing children aged 0-6 years and 176(258 ears) conductive hearing loss children were selected for Click-ABR. The differences of Click-ABR parameters in children of different months were analyzed, and the correlation between the degree of conductive hearing loss and Click-ABR parameters was explored. Results:The incubation period of wave Ⅰ was not correlated with the age of month, while the incubation period of wave Ⅲ, wave Ⅴ, waveⅠ-Ⅲ and wave Ⅰ-Ⅴ were highly correlated with the age of month. There was a positive correlation between the latency of wave Ⅰ and hearing threshold in the children with sound transmission function is abnormal under 80 dB nHL stimulation, and there was no difference between the standard values of wave Ⅰ-Ⅲ and Ⅰ-Ⅴ in the children with sound transmission function is abnormal and normal children. Conclusion:The latency of ABR wave Ⅲ and Ⅴ, and the interval between wave Ⅰ-Ⅲ and Ⅰ-Ⅴ shorten with the increase of age in children aged 0-6 years. The normal ABR values of children of different ages should be established in each hearing clinic for children as a reference. Combined with Click-ABR threshold and 80 dB nHL acoustic subwave Ⅰlatency, the abnormal conduction function can be preliminatively screened out, which should be further supplemented with other combinations of hearing diagnosis.


Subject(s)
Evoked Potentials, Auditory, Brain Stem , Hearing Loss, Conductive , Humans , Child , Infant, Newborn , Infant , Child, Preschool , Hearing Loss, Conductive/diagnosis , Evoked Potentials, Auditory, Brain Stem/physiology , Auditory Threshold/physiology , Hearing/physiology , Acoustics , Acoustic Stimulation
18.
Foods ; 12(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36673346

ABSTRACT

Acute gouty arthritis is an acute inflammatory reaction caused by the deposition of monosodium urate (MSU) crystals in joints and surrounding soft tissues. Controlling inflammation is the key to preventing acute gouty arthritis. Anti-inflammatory activities and the possible molecular mechanisms of plum (Prunus salicina Lindl cv. "furong") polyphenols (PSLP) on RAW264.7 macrophage cells induced by monosodium urate were investigated. PPSF significantly inhibited the activity of inflammatory factors such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-18 (IL-18). In addition, PPSF exhibited excellent activation of superoxide dismutase (SOD) activity and reduction of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels in RAW264.7 macrophages. The results of global screening of all transcripts by RNA-seq revealed 8585 differentially expressed genes between the PSLP-treated group and the MUS group. From GO analysis, PSLP could affect the occurrence and development of RAW264.7 macrophage inflammation through biological processes, such as organic substance metabolism, intracellular organelles, and binding function. The regulation mechanism of PSLP on MSU-induced RAW264.7 macrophage inflammation may be achieved through the HIF-1 signaling pathway, renal cell carcinoma, the ErbB signaling pathway, and the FoxO signaling pathway. Therefore, PSLP has great prospects in the prevention of gout and similar inflammatory diseases.

19.
Foods ; 12(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38231765

ABSTRACT

An experiment was conducted on the polyphenol content, flavonoid content, anthocyanin content, and antioxidant capacity of Furong plum (Prunus salicina Lindl. cv. "furong") at different maturity stages to determine the most suitable maturity stage. The inhibition of plum polyphenols on xanthine oxidase (XOD) was measured, and its kinetics were studied to reveal the inhibitory mechanism. The experimental results showed that the polyphenol, flavonoid and anthocyanin contents of plums at the ripe stage were the highest, reaching 320.46 mg GAE/100 g FW, 204.21 mg/100 g FW, and 66.24 mg/100 g FW, respectively, in comparison those of the plums at the immature and mid-ripe stages. The antioxidant capacity of the ripe plums was stronger than it was during the other stages of the plums growth. Among them, the total polyphenols of the ripe plums exhibited the strongest antioxidant capacity (IC50 values against DPPH and hydroxyl radicals were 28.19 ± 0.67 µg/mL and 198.16 ± 7.55 µg/mL, respectively), which was between the antioxidant capacity of the free polyphenols and bound polyphenols. The major phenolic monomer compounds of plum polyphenols were flavan-3-ols (epicatechin, catechin, proanthocyanidin, and procyanidin B2), flavonols (myricetin), and phenolic acids (chlorogenic acid, ferulic acid, and protocatechuic acid). Additionally, plum polyphenols exhibited a strong inhibitory effect on XOD, with an IC50 value of 77.64 µg/mL. The inhibition kinetics showed that plum polyphenols are mixed-type inhibitors that inhibit XOD activity and that the inhibition process is reversible. The calculated values of Ki and α were 16.53 mmol/L and 0.26, respectively.

20.
Nutrients ; 14(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079724

ABSTRACT

Traumatic brain injury (TBI) is a common cause of disability and mortality, affecting millions of people every year. The neuroinflammation and immune response post-TBI initially have neuroprotective and reparative effects, but prolonged neuroinflammation leads to secondary injury and increases the risk of chronic neurodegenerative diseases. Persistent microglial activation plays a critical role in chronic neuroinflammation post-TBI. Given the bidirectional communication along the brain-gut axis, it is plausible to suppose that gut microbiota dysbiosis post-TBI influences microglial activation. In the present study, hippocampal microglial activation was observed at 7 days and 28 days post-TBI. However, in TBI mice with a depletion of gut microbiota, microglia were activated at 7 days post-TBI, but not at 28 days post-TBI, indicating that gut microbiota contributes to the long-term activation of microglia post-TBI. In addition, in conventional mice colonized by the gut microbiota of TBI mice using fecal microbiota transplant (FMT), microglial activation was observed at 28 days post-TBI, but not at 7 days post-TBI, supporting the role of gut microbiota dysbiosis in persistent microglial activation post-TBI. The RNA sequencing of the hippocampus identified a microglial activation gene, Lyz2, which kept upregulation post-TBI. This persistent upregulation was inhibited by oral antibiotics and partly induced by FMT. 16s rRNA gene sequencing showed that the composition and function of gut microbiota shifted over time post-TBI with progressive dysbiosis, and untargeted metabolomics profiling revealed that the tryptophan metabolic phenotype was differently reshaped at 7 days and 28 days post-TBI, which may play a role in the persistent upregulation of Lyz2 and the activation of microglia. This study implicates that gut microbiota and Lyz2 are potential targets for the development of novel strategies to address persistent microglial activation and chronic neuroinflammation post-TBI, and further investigations are warranted to elucidate the specific mechanism.


Subject(s)
Brain Injuries, Traumatic , Gastrointestinal Microbiome , Animals , Brain Injuries, Traumatic/complications , Dysbiosis/complications , Gastrointestinal Microbiome/physiology , Humans , Mice , Mice, Inbred C57BL , Microglia , Phenotype , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Tryptophan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...