Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(8): 4277-4291, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38288993

ABSTRACT

Salt stress significantly impedes plant growth and the crop yield. This study utilized de novo transcriptome assembly and ribosome profiling to explore mRNA translation's role in rice salt tolerance. We identified unrecognized translated open reading frames (ORFs), including 42 upstream transcripts and 86 unannotated transcripts. A noteworthy discovery was the role of a small ORF, Ospep5, in conferring salt tolerance. Overexpression of Ospep5 in plants increased salt tolerance, while its absence led to heightened sensitivity. This hypothesis was corroborated by the findings that exogenous application of the synthetic small peptide Ospep5 bolstered salt tolerance in both rice and Arabidopsis. We found that the mechanism underpinning the Ospep5-mediated salt tolerance involves the maintenance of intracellular Na+/K+ homeostasis, facilitated by upregulation of high-affinity potassium transporters (HKT) and Na+/H+ exchangers (SOS1). Furthermore, a comprehensive multiomics approach, particularly ribosome profiling, is instrumental in uncovering unannotated ORFs and elucidating their functions in plant stress responses.


Subject(s)
Arabidopsis , Oryza , Salt Stress , Salt Tolerance/genetics , Gene Expression Profiling , Sodium/metabolism , Salt-Tolerant Plants/metabolism , Transcriptome , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Oryza/metabolism
2.
J Agric Food Chem ; 71(41): 15186-15193, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37788677

ABSTRACT

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an ideal target for herbicide resistance genetic engineering. In this study, a mutant MFRR-2 with mesotrione resistance was screened from an Oryza sativa HPPD and mutant-Zea mays HPPD DNA shuffling library. The enzyme properties showed that although the stability of the mutant decreased in vitro, the enzyme activity of MFRR-2 at the optimum temperature of 25 °C was still equivalent to that of OsHPPD. Under 50 µM mesotrione treatment, MFRR-2 enzyme activity remained at approximately 90%, while the enzyme activity of OsHPPD decreased by approximately 50%. Surprisingly, Fe2+ was found to have an inhibitory effect on the enzyme activity. Then, the transgenic rice of the MFRR-2 gene showed approximately 1.5 times mesotrione resistance compared to OsHPPD transgenic rice. In conclusion, this study has conducted a beneficial exploration on the use of DNA shuffling for HPPD-directed evolution, and the mutant has potential application value for herbicide resistance genetic engineering.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Dioxygenases , Herbicides , Oryza , Herbicide Resistance/genetics , 4-Hydroxyphenylpyruvate Dioxygenase/genetics , Oryza/genetics , Herbicides/pharmacology , DNA Shuffling , Enzyme Inhibitors/pharmacology
3.
Physiol Plant ; 175(3): e13932, 2023.
Article in English | MEDLINE | ID: mdl-37170652

ABSTRACT

Sodium nitroprusside (SNP), as a nitric oxide donor, is widely used in postharvest fruit physiology and metabolism. Our previous study has indicated that SNP plays a crucial role in postharvest browning control of rambutan, but the molecular mechanism underlying this process is still unclear. In this research, we investigated the gene expression and function of postharvest rambutan in response to SNP during browning. We found 7336 differentially expressed genes (DEGs), among which 2206 were upregulated and 5130 were downregulated. Gene Ontology (GO) enrichment as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed, and the real-time quantitative PCR (qPCR) data were consistent with transcriptome data. The DEGs relevant to rambutan pericarp browning were mainly involved in anthocyanin biosynthesis, phenolic oxidation, reactive oxygen species (ROS) production, and energy supply. It was shown that SNP regulated the synthesis and degradation of anthocyanins, accumulation of phenols, level of ROS and energy metabolism to suppress the postharvest browning of rambutan. Also, one WRKY transcription factor involved in ROS metabolism was observed to be differentially regulated. These findings add to our insights into the molecular mechanisms of the SNP-induced browning delays of rambutan, which has implications for subsequent studies on molecular mechanisms of fruit browning.


Subject(s)
Sapindaceae , Sapindaceae/metabolism , Nitroprusside/pharmacology , Reactive Oxygen Species/metabolism , Anthocyanins/metabolism , Gene Expression Profiling , Transcriptome , Phenols/metabolism
4.
J Proteomics ; 197: 53-59, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30790687

ABSTRACT

Peptide-spectrum matches (PSM) scoring between the experimental and theoretical spectrum is a key step in the identification of proteins using mass spectrometry (MS)-based proteomics analyses. Efficient protein identification using MS/MS data remains a challenge. The strategy of using RNA-seq data increases the number of proteins identified by re-constructing the custom search database and integrating mRNA abundance into the false discovery rate of post-PSM. However, this process lacks an algorithm that can allow the incorporation of mRNA abundance into the key scoring model of PSM. Therefore, we developed a novel PSM scoring model, which incorporates mRNA abundance for improved peptide and protein identification. In the new algorithm, abundance information of mRNA was transformed to the prior probability of protein identification and integrated to re-score in PSM using the binomial probability distribution model. Compared with other algorithms using five MS/MS datasets, the results showed that the least improvement ratios of peptide and protein groups were 3.39%-9.79% and 0.48%-8.16% in different datasets (human, rat, zebrafish, yeast, and Arabidopsis thaliana). The new strategy offers an effective solution for MS-based identification of peptides and proteins. SIGNIFICANCE: The new algorithm identifies proteins by quantifying mRNA abundance (FPKM) and incorporating it into a scoring model for peptide-spectrum matches. It is important to improve peptide and protein identification from MS/MS datasets in proteomics research.


Subject(s)
Algorithms , Arabidopsis/metabolism , Databases, Nucleic Acid , RNA, Fungal/metabolism , RNA, Messenger/metabolism , RNA, Plant/metabolism , Saccharomyces cerevisiae/metabolism , Zebrafish/metabolism , Animals , Humans , Rats , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...