Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 938
Filter
1.
Clin Ther ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39019698

ABSTRACT

PURPOSE: Niraparib is a poly(adenosine diphosphate [ADP]-ribose) polymerase inhibitor approved for the maintenance treatment of advanced ovarian cancer (OC). Niraparib was originally approved in recurrent OC at a fixed starting dose (FSD) of 300 mg once daily (QD). This analysis characterized the population pharmacokinetics (PK) of niraparib and evaluated the relationships between exposure, efficacy, and safety to support clinical use of an individualized dosing strategy, in which the starting dose of niraparib was adjusted based on patient characteristics to improve the benefit-risk profile. METHODS: A population PK model was developed by pooling data from four niraparib clinical trials (PN001 [n = 104], QUADRA [n = 455], NOVA [n = 403], and PRIMA [n = 480]) in patients with solid tumors, including OC. Exposure-response analyses were conducted to explore the relationships of niraparib exposure with progression-free survival (PFS) and adverse events in the PRIMA study. A multivariate logistic regression model was also developed to estimate the probability of grade ≥3 thrombocytopenia, using data from patients enrolled in PRIMA and NOVA. The impact of an individualized starting dose (ISD) regimen (200 mg QD in patients with body weight [BW] <77 kg or platelet count [PLT] <150,000/µL, or 300 mg QD in patients with BW ≥77 kg and PLT ≥150,000/µL) on systemic exposure, efficacy, and safety was assessed. FINDINGS: Niraparib disposition was best described by a 3-compartment model with linear elimination. Key covariates included baseline creatinine clearance, BW, albumin, and age, all of which had minor effects on niraparib exposure. Comparable model-predicted exposure up to the time of disease progression/death or censoring in the 300-mg FSD and 200-/300-mg ISD groups was consistent with the lower rate of dose reduction in the ISD groups. No consistent niraparib exposure-response relationship was observed for efficacy in all PRIMA patients (first-line OC), and no statistically significant difference was seen in PFS curves for patients receiving a niraparib dose of 200 mg versus 300 mg. In the multivariate regression model, performed using combined data from PRIMA and NOVA, higher niraparib exposure (area under the concentration-time curve at steady-state [AUCss]), lower BW, and lower PLT were associated with an increased risk of grade ≥3 thrombocytopenia. IMPLICATIONS: Population PK and exposure-response analyses support use of an ISD to improve the safety profile of niraparib, including reducing the rate of grade ≥3 thrombocytopenia, without compromising efficacy. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, NCT01847274 (NOVA), NCT00749502 (PN001), NCT02655016 (PRIMA), NCT02354586 (QUADRA), www. CLINICALTRIALS: gov.

2.
Article in English | MEDLINE | ID: mdl-39020510

ABSTRACT

Artificial solid electrolyte interphase (SEI) layers have been widely regarded as an effective protection for lithium (Li) metal anodes. In this work, an artificial SEI film consisting of dense Li6.4La3Zr1.4Ta0.6O12 (LLZTO) nanoparticles and polymerized styrene butadiene rubber is designed, which has good mechanical and chemical stability to effectively prevent Li anode corrosion by the electrolyte. The LLZTO-based SEI film can not only guide Li to uniformly deposit at the interface but also accelerate the electrochemical reaction kinetics due to its high Li+ conductivity. In particular, the high Young's modulus of the LLZTO-based SEI will regulate e- distribution in the continuous Li plating/stripping process and achieve uniform deposition of Li. As a consequence, the Li anode with LLZTO-based SEI (Li@LLZTO) enables symmetric cells to demonstrate a stable overpotential of 25 mV for 600 h at a current density of 1 mA cm-2 for 1 mA h cm-2. The Li@LLZTO||LFP (LiFePO4) full cell exhibits a capacity of 106 mA h g-1 after 800 cycles at 5 C with retention as high as 90%. Our strategy here suggests that the artificial SEI with high Young's modulus effectively inhibits the formation of Li dendrites and provides some guidance for the design of higher performance Li metal batteries.

3.
Cancer Sci ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979884

ABSTRACT

The relationship among polycystic ovary syndrome (PCOS), endometrial cancer (EC), and glycometabolism remains unclear. We explored shared genes between PCOS and EC, using bioinformatics to unveil their pathogenic connection and influence on EC prognosis. Gene Expression Omnibus datasets GSE226146 (PCOS) and GSE196033 (EC) were used. A protein-protein interaction (PPI) network was constructed to identify the central genes. Candidate markers were screened using dataset GSE54250. Differences in marker expression were confirmed in mouse PCOS and human EC tissues using RT-PCR and immunohistochemistry. The effect of PGD on EC proliferation and migration was explored using Ki-67 and Transwell assays. PGD's impact on the glycometabolic pathway within carbon metabolism was assessed by quantifying glucose content and lactic acid production. R software identified 31 common genes in GSE226146 and GSE196033. Gene Ontology functional classification revealed enrichment in the "purine nucleoside triphosphate metabolism process," with key Kyoto Encyclopedia of Genes and Genomes pathways related to "carbon metabolism." The PPI network identified 15 hub genes. HK2, NDUFS8, PHGDH, PGD, and SMAD3 were confirmed as candidate markers. The RT-PCR analysis validated distinct HK2 and PGD expression patterns in mouse PCOS ovarian tissue and human EC tissue, as well as in normal and EC cells. Transfection experiments with Ishikawa cells further confirmed PGD's influence on cell proliferation and migration. Suppression of PGD expression impeded glycometabolism within the carbon metabolism of EC cells, suggesting PGD as a significant PCOS risk factor impacting EC proliferation and migration through modulation of single carbon metabolism. These findings highlight PGD's pivotal role in EC onset and prognosis.

4.
Phytomedicine ; 132: 155816, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38964158

ABSTRACT

BACKGROUND: The development of gut-liver axis metabolic immune crosstalk is intimately associated with intestinal barrier disorder, intestinal SCFAs-Th17/Treg immunological imbalance, and disorders of the gut microbiota. Prior research has discovered that Dendrobium officinale National Herbal Drink (NHD), a traditional Chinese medicine drink with enhanced immunity, may enhance the immunological response in animals with impaired immune systems brought on by cyclophosphamide by repairing intestinal barrier function and controlling turbulence in the gut microbiota. However, whether NHD can further improve the gut-liver axis metabolic immune crosstalk and its related mechanisms need to be systematically studied. OBJECTIVES: The purpose of this study is to clarify the function and mechanism of NHD in enhancing the gut-liver axis metabolic immunological crosstalk brought on by excessive alcohol intake. METHODS: In this work, we set up a mouse model to analyze the metabolic and immunological crosstalk involving the gut-liver axis across 7 weeks of continuous, excessive drinking. At the same time, high and low doses (20,10 ml/kg) of NHD were given by gavage. The effect of NHD on improving the metabolism of gut-liver axis was evaluated by blood lipid, liver lipid deposition, liver function and intestinal pathophysiology. By measuring serum immunological indices, intestinal barrier, and intestinal immune barrier, the impact of NHD on enhancing immune and intestinal barrier function was assessed. Furthermore, immunohistochemistry, immunofluorescence, 16S rRNA, Western blot, q-PCR and other methods were used to detect gut microbiota, SCFAs-GPR41/43 pathway, intestinal Th17/Treg immune cells and PPAR-α-NPC1L1/SREBP1 pathway to elucidate the mechanism by which NHD enhances the gut-liver axis' metabolic immune crosstalk. RESULTS: Our study demonstrated that NHD has the potential to improve the pathophysiological damage caused by gut-liver axis in model mice. NHD also ameliorated the disorder of lipid metabolism. In addition, it regulated the levels of peripheral blood T cell immunity and serum immune factors. And NHD can restore intestinal mechanical and immune barrier damage. NHD has a favorable impact on the quantity of beneficial bacteria, including uncultured_bacterium_g__norank_f__muribaculacea and uncultured_bacterium_g__Turicibacter. Additionally, it raised the model mice's levels of SCFAs (n-butyric acid, isovaleric acid, etc.). This resulted in the promotion of intestinal GPR41/43-ERK1/2 expression and the reshaping of intestinal CD4+T cell Th17/Treg homeostasis. As a consequence, colon IL-22 and IL-10 levels increased, while colon IL-17A levels decreased. Lastly, NHD raised the amount of intestinal IAP/LPS, regulated the development of PPAR-α-NPC1L1/SREBP1 pathway in gut-liver axis, and improve lipid metabolism disorder. CONCLUSIONS: Our study found that NHD can improve the gut-liver axis metabolic immune crosstalk in model mice caused by excessive drinking. The mechanism might be connected to how NHD controls gut microbiota disorders in model mice, the activation of intestinal SCFAs-GPR41/43 pathway, the remodeling of Th17/Treg immune homeostasis of intestinal CD4+T cells, the improvement of IAP/LPS abnormality, and further mediating the PPAR-α-NPC1L1/SREBP1 pathway of lipid metabolism in gut-liver axis.

5.
J Neurochem ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39032068

ABSTRACT

The nucleus of the solitary tract (NTS) receives direct viscerosensory vagal afferent input that drives autonomic reflexes, neuroendocrine function and modulates behaviour. A subpopulation of NTS neurons project to the nucleus accumbens (NAc); however, the function of this NTS-NAc pathway remains unknown. A combination of neuroanatomical tracing, slice electrophysiology and fibre photometry was used in mice and/or rats to determine how NTS-NAc neurons fit within the viscerosensory network. NTS-NAc projection neurons are predominantly located in the medial and caudal portions of the NTS with 54 ± 7% (mice) and 65 ± 3% (rat) being TH-positive, representing the A2 NTS cell group. In horizontal brainstem slices, solitary tract (ST) stimulation evoked excitatory post-synaptic currents (EPSCs) in NTS-NAc projection neurons. The majority (75%) received low-jitter, zero-failure EPSCs characteristic of monosynaptic ST afferent input that identifies them as second order to primary sensory neurons. We then examined whether NTS-NAc neurons respond to cholecystokinin (CCK, 20 µg/kg ip) in vivo in both mice and rats. Surprisingly, there was no difference in the number of activated NTS-NAc cells between CCK and saline-treated mice. In rats, just 6% of NTS-NAc cells were recruited by CCK. As NTS TH neurons are the primary source for NAc noradrenaline, we measured noradrenaline release in the NAc and showed that NAc noradrenaline levels declined in response to cue-induced reward retrieval but not foot shock. Combined, these findings suggest that high-fidelity afferent information from viscerosensory afferents reaches the NAc. These signals are likely unrelated to CCK-sensitive vagal afferents but could interact with other sensory and higher order inputs to modulate learned appetitive behaviours.

6.
Prog Neurobiol ; 240: 102656, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009108

ABSTRACT

The orientation map is one of the most well-studied functional maps of the visual cortex. However, results from the literature are of different qualities. Clear boundaries among different orientation domains and blurred uncertain distinctions were shown in different studies. These unclear imaging results will lead to an inaccuracy in depicting cortical structures, and the lack of consideration in experimental design will also lead to biased depictions of the cortical features. How we accurately define orientation domains will impact the entire field of research. In this study, we test how spatial frequency (SF), stimulus size, location, chromatic, and data processing methods affect the orientation functional maps (including a large area of dorsal V4, and parts of dorsal V1) acquired by intrinsic signal optical imaging. Our results indicate that, for large imaging fields, large grating stimuli with mixed SF components should be considered to acquire the orientation map. A diffusion model image enhancement based on the difference map could further improve the map quality. In addition, the similar outcomes of achromatic and chromatic gratings indicate two alternative types of afferents from LGN, pooling in V1 to generate cue-invariant orientation selectivity.

7.
J Colloid Interface Sci ; 674: 238-248, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38936080

ABSTRACT

The voltage decay of Li-rich layered oxide cathode materials results in the deterioration of cycling performance and continuous energy loss, which seriously hinders their application in the high-energy-density lithium-ion battery (LIB) market. However, the origin of the voltage decay mechanism remains controversial due to the complex influences of transition metal (TM) migration, oxygen release, indistinguishable surface/bulk reactions and the easy intra/inter-crystalline cracking during cycling. We investigated the direct cause of voltage decay in micrometer-scale single-crystal Li1.2Mn0.54Ni0.13Co0.13O2 (SC-LNCM) cathode materials by regulating the cut-off voltage. The redox of TM and O2- ions can be precisely controlled by setting different voltage windows, while the cracking can be restrained, and surface/bulk structural evaluation can be monitored because of the large single crystal size. The results show that the voltage decay of SC-LNCM is related to the combined effect of cation rearrangement and oxygen release. Maintaining the discharge cutoff voltage at 3 V or the charging cutoff voltage at 4.5 V effectively mitigates the voltage decay, which provides a solution for suppressing the voltage decay of Li-rich and Mn-based layered oxide cathode materials. Our work provides significant insights into the origin of the voltage decay mechanism and an easily achievable strategy to restrain the voltage decay for Li-rich and Mn-based cathode materials.

8.
Chin Med ; 19(1): 84, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867320

ABSTRACT

BACKGROUND: Low immunity and sleep disorders are prevalent suboptimal health conditions in contemporary populations, which render them susceptible to the infiltration of pathogenic factors. LJC, which has a long history in traditional Chinese medicine for nourishing the Yin and blood and calming the mind, is obtained by modifying Qiyuan paste. Dendrobium officinale Kimura et Migo has been shown to improve the immune function in sleep-deprived mice. In this study, based on the traditional Chinese medicine theory, LJC was prepared by adding D. officinale Kimura et Migo to Qiyuan paste decoction. METHODS: Indicators of Yin deficiency syndrome, such as back temperature and grip strength, were measured in each group of mice; furthermore, behavioral tests and pentobarbital sodium-induced sleep tests were performed. An automatic biochemical analyzer, enzyme-linked immunosorbent assay kit, and other methods were used to determine routine blood parameters, serum immunoglobulin (IgG, IgA, and IgM), cont (C3, C4), acid phosphatase (ACP) and lactate dehydrogenase (LDH) levels in the spleen, serum hemolysin, and delayed-type hypersensitivity (DTH) levels. In addition, serum levels of γ-aminobutyric acid (GABA) and glutamate (Glu) were detected using high-performance liquid chromatography (HPLC). Hematoxylin-eosin staining and Nissl staining were used to assess the histological alterations in the hypothalamus tissue. Western blot and immunohistochemistry were used to detect the expressions of the GABA pathway proteins GABRA1, GAD, GAT1, and GABAT1 and those of CD4+ and CD8+ proteins in the thymus and spleen tissues. RESULTS: The findings indicated that LJC prolonged the sleep duration, improved the pathological changes in the hippocampus, effectively upregulated the GABA content in the serum of mice, downregulated the Glu content and Glu/GABA ratio, enhanced the expressions of GABRA1, GAT1, and GAD, and decreased the expression of GABAT1 to assuage sleep disorders. Importantly, LJC alleviated the damage to the thymus and spleen tissues in the model mice and enhanced the activities of ACP and LDH in the spleen of the immunocompromised mice. Moreover, serum hemolysin levels and serum IgG, IgA, and IgM levels increased after LJC administration, which manifested as increased CD4+ content, decreased CD8+ content, and enhanced DTH response. In addition, LJC significantly increased the levels of complement C3 and C4, increased the number of white blood cells and lymphocytes, and decreased the percentage of neutrophils in the blood. CONCLUSIONS: LJC can lead to improvements in immunocompromised mice models with insufficient sleep. The underlying mechanism may involve regulation of the GABA/Glu content and the expression levels of GABA metabolism pathway-related proteins in the brain of mice, enhancing their specific and nonspecific immune functions.

9.
Inorg Chem ; 63(24): 11146-11154, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38838348

ABSTRACT

Surface ligands play crucial roles in modifying the properties of metal nanoclusters and stabilizing atomically precise structures, and also serve as vital linkers for constructing cluster-based coordination polymers. In this study, we present the results of the solvothermal synthesis of eight novel copper alkynyl clusters incorporating pyridine ligands using a one-pot method. The resulting compounds underwent characterization through elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD). Our observations revealed that distinct pyridine ligands with varying lengths and coordination sites exert significant influence on the structure and dimensionality of the clusters. The structural diversity of these clusters led to the formation of one-dimensional (1D), two-dimensional (2D), or dimer arrangements linked by seven pyridine bridging ligands. Remarkably, these complexes exhibited unique UV-vis absorption and photoluminescence properties, which were influenced by the specific bridging ligand and structural framework. Furthermore, density functional theory (DFT) calculations demonstrated the capability of the conjugated system in the pyridine ligand to impact the band gap of clusters. This study not only unveils the inherent structural diversity in coordination polymers based on copper alkynyl clusters but also offers valuable insights into harnessing ligand engineering for structural and property modulation.

10.
Clin Transl Immunology ; 13(6): e1515, 2024.
Article in English | MEDLINE | ID: mdl-38835955

ABSTRACT

Objectives: Primary pulmonary lymphoepithelioma-like carcinoma (PLELC) is a subtype of lung carcinoma associated with the Epstein-Barr virus (EBV). The clinical predictive biomarkers of immune checkpoint blockade (ICB) in PLELC require further investigation. Methods: We prospectively analysed EBV levels in the blood and immune tumor biomarkers of 31 patients with ICB-treated PLELC. Viral EBNA-1 and BamHI-W DNA fragments in the plasma were quantified in parallel using quantitative polymerase chain reaction. Results: Progression-free survival (PFS) was significantly longer in EBNA-1 high or BamHI-W high groups. A longer PFS was also observed in patients with both high plasma EBNA-1 or BamHI-W and PD-L1 ≥ 1%. Intriguingly, the tumor mutational burden was inversely correlated with EBNA-1 and BamHI-W. Plasma EBV load was negatively associated with intratumoral CD8+ immune cell infiltration. Dynamic changes in plasma EBV DNA level were in accordance with the changes in tumor volume. An increase in EBV DNA levels during treatment indicated molecular progression that preceded the imaging progression by several months. Conclusions: Plasma EBV DNA could be a useful and easy-to-use biomarker for predicting the clinical activity of ICB in PLELC and could serve to monitor disease progression earlier than computed tomography imaging.

11.
BMC Urol ; 24(1): 104, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730434

ABSTRACT

BACKGROUND: Emerging evidence has indicated that a number of circular RNAs (circRNAs) participate in renal cell carcinoma (RCC) carcinogenesis. Nevertheless, the activity and molecular process of circPRELID2 (hsa_circ_0006528) in RCC progression remain unknown. METHODS: CircPRELID2, miR-22-3p and ETS variant 1 (ETV1) levels were gauged by qRT-PCR. Effect of the circPRELID2/miR-22-3p/ETV1 axis was evaluated by detecting cell growth, motility, and invasion. Immunoblotting assessed related protein levels. The relationships of circPRELID2/miR-22-3p and miR-22-3p/ETV1 were confirmed by RNA immunoprecipitation (RIP), luciferase reporter or RNA pull-down assay. RESULTS: CircPRELID2 was up-regulated in RCC. CircPRELID2 silencing suppressed RCC cell growth, motility and invasion. Moreover, circPRELID2 silencing weakened M2-type macrophage polarization in THP1-induced macrophage cells. CircPRELID2 sequestered miR-22-3p, and circPRELID2 increased ETV1 expression through miR-22-3p. Moreover, the inhibitory impact of circPRELID2 silencing on RCC cell malignant behaviors was mediated by the miR-22-3p/ETV1 axis. Furthermore, circPRELID2 knockdown in vivo hampered growth of xenograft tumors. CONCLUSION: Our study demonstrates that circPRELID2 silencing can mitigate RCC malignant development through the circPRELID2/miR-22-3p/ETV1 axis, highlighting new therapeutic targets for RCC treatment.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , MicroRNAs , RNA, Circular , MicroRNAs/genetics , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , RNA, Circular/genetics , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Mice , Animals , Cell Line, Tumor
12.
J Hepatol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38759889

ABSTRACT

BACKGROUND & AIMS: The liver is the main organ of ketogenesis, while ketones are mainly metabolized in peripheral tissues via the critical enzyme 3-oxoacid CoA-transferase 1 (OXCT1). We previously found that ketolysis is reactivated in hepatocellular carcinoma (HCC) cells through OXCT1 expression to promote tumor progression; however, whether OXCT1 regulates antitumor immunity remains unclear. METHODS: To investigate the expression pattern of OXCT1 in HCC in vivo, we conducted multiplex immunohistochemistry experiments on human HCC specimens. To explore the role of OXCT1 in mouse HCC tumor-associated macrophages (TAMs), we generated LysMcreOXCT1f/f (OXCT1 conditional knockout in macrophages) mice. RESULTS: Here, we found that inhibiting OXCT1 expression in tumor-associated macrophages reduced CD8+ T-cell exhaustion through the succinate-H3K4me3-Arg1 axis. Initially, we found that OXCT1 was highly expressed in liver macrophages under steady state and that OXCT expression was further increased in TAMs. OXCT1 deficiency in macrophages suppressed tumor growth by reprogramming TAMs toward an antitumor phenotype, reducing CD8+ T-cell exhaustion and increasing CD8+ T-cell cytotoxicity. Mechanistically, high OXCT1 expression induced the accumulation of succinate, a byproduct of ketolysis, in TAMs, which promoted Arg1 transcription by increasing the H3K4me3 level in the Arg1 promoter. In addition, pimozide, an inhibitor of OXCT1, suppressed Arg1 expression as well as TAM polarization toward the protumor phenotype, leading to decreased CD8+ T-cell exhaustion and slower tumor growth. Finally, high expression of OXCT1 in macrophages was positively associated with poor survival in patients with HCC. CONCLUSIONS: In conclusion, our results demonstrate that OXCT1 epigenetically suppresses antitumor immunity, suggesting that suppressing OXCT1 activity in TAMs could be an effective approach for treating liver cancer. IMPACT AND IMPLICATIONS: The intricate metabolism of liver macrophages plays a critical role in shaping hepatocellular carcinoma progression and immune modulation. Targeting macrophage metabolism to counteract immune suppression presents a promising avenue for hepatocellular carcinoma treatment. Herein, we found that the ketogenesis gene OXCT1 was highly expressed in tumor-associated macrophages (TAMs) and promoted tumor growth by reprogramming TAMs toward a protumor phenotype. Pharmacological targeting or genetic downregulation of OXCT1 in TAMs enhances antitumor immunity and slows tumor growth. Our results suggest that suppressing OXCT1 activity in TAMs could be an effective approach for treating liver cancer.

13.
Pathol Res Pract ; 259: 155369, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820928

ABSTRACT

Bladder cancer is a common malignancy with a poor prognosis worldwide. Positive cofactor 4 (PC4) is widely reported to promote malignant phenotypes in various tumors. Nonetheless, the biological function and mechanism of PC4 in bladder cancer remain unclear. Here, for the first time, we report that PC4 is elevated in bladder cancer and is associated with patient survival. Moreover, PC4 deficiency obviously inhibited bladder cancer cell proliferation and metastasis by reducing the expression of genes related to cancer stemness (CD44, CD47, KLF4 and c-Myc). Through RNA-seq and experimental verification, we found that activation of the Wnt5a/ß-catenin pathway is involved in the malignant function of PC4. Mechanistically, PC4 directly interacts with Sp1 to promote Wnt5a transcription. Thus, our study furthers our understanding of the role of PC4 in cancer stemness regulation and provides a promising strategy for bladder cancer therapy.


Subject(s)
Gene Expression Regulation, Neoplastic , Kruppel-Like Factor 4 , Neoplastic Stem Cells , Urinary Bladder Neoplasms , Wnt-5a Protein , Animals , Humans , Mice , beta Catenin/metabolism , beta Catenin/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Kruppel-Like Factor 4/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Sp1 Transcription Factor/metabolism , Sp1 Transcription Factor/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Wnt Signaling Pathway/physiology , Wnt Signaling Pathway/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics
14.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1848-1864, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812197

ABSTRACT

Elucidating the quality markers(Q-markers) of traditional Chinese medicines is essential for understanding the mechanisms of action and promoting the rational use of traditional Chinese medicines as well as for developing traditional Chinese medicine-derived drugs. Studies have shown that surface plasmon resonance(SPR) is promising in this field. This study proposed a method based on pull-down with SPR chips to predict the Q-markers of Angong Niuhuang pills(AGNHP). Firstly, 71 main chemical components of AGNHP were analyzed by UPLC-Q-TOF-MS, and then network pharmacology was employed to predict the potential targets of AGNHP against stroke. Secondly, the STAT3 protein chip was constructed, and the extract of AGNHP was recovered by pull-down of the SPR system for STAT3 ligand. The potential active ingredients were collected, enriched, and identified as coptisine, palmatine, epiberberine, berberine, worenine, demethyleneberberine, jatrorrhizine, tetrahydrocoptisine, baicalein, and baicalin methyl ester. Next, the affinity constants of the 10 active ingredients were determined as 44.7, 44, 58.1, 51.3, 39.7, 32.1, 49.2, 69.1, 19.7, and 24.9 µmol·L~(-1), respectively. The molecular docking results showed that the 10 compounds could compete for binding with STAT3. This is the first report that SPR combined with UPLC-Q-TOF-MS is reliable and feasible for determining the active ingredients of AGNHP at the molecular level from complex systems. STAT3 could be used as a potential target for the biological quality evaluation of AGNHP.


Subject(s)
Drugs, Chinese Herbal , Mass Spectrometry , Surface Plasmon Resonance , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Mass Spectrometry/methods , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Quality Control , Humans , Liquid Chromatography-Mass Spectrometry
15.
EClinicalMedicine ; 72: 102622, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745965

ABSTRACT

Background: The role of transarterial chemoembolization (TACE) in the treatment of advanced hepatocellular carcinoma (HCC) is unconfirmed. This study aimed to assess the efficacy and safety of immune checkpoint inhibitors (ICIs) plus anti-vascular endothelial growth factor (anti-VEGF) antibody/tyrosine kinase inhibitors (TKIs) with or without TACE as first-line treatment for advanced HCC. Methods: This nationwide, multicenter, retrospective cohort study included advanced HCC patients receiving either TACE with ICIs plus anti-VEGF antibody/TKIs (TACE-ICI-VEGF) or only ICIs plus anti-VEGF antibody/TKIs (ICI-VEGF) from January 2018 to December 2022. The study design followed the target trial emulation framework with stabilized inverse probability of treatment weighting (sIPTW) to minimize biases. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), objective response rate (ORR), and safety. The study is registered with ClinicalTrials.gov, NCT05332821. Findings: Among 1244 patients included in the analysis, 802 (64.5%) patients received TACE-ICI-VEGF treatment, and 442 (35.5%) patients received ICI-VEGF treatment. The median follow-up time was 21.1 months and 20.6 months, respectively. Post-application of sIPTW, baseline characteristics were well-balanced between the two groups. TACE-ICI-VEGF group exhibited a significantly improved median OS (22.6 months [95% CI: 21.2-23.9] vs 15.9 months [14.9-17.8]; P < 0.0001; adjusted hazard ratio [aHR] 0.63 [95% CI: 0.53-0.75]). Median PFS was also longer in TACE-ICI-VEGF group (9.9 months [9.1-10.6] vs 7.4 months [6.7-8.5]; P < 0.0001; aHR 0.74 [0.65-0.85]) per Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1. A higher ORR was observed in TACE-ICI-VEGF group, by either RECIST v1.1 or modified RECIST (41.2% vs 22.9%, P < 0.0001; 47.3% vs 29.7%, P < 0.0001). Grade ≥3 adverse events occurred in 178 patients (22.2%) in TACE-ICI-VEGF group and 80 patients (18.1%) in ICI-VEGF group. Interpretation: This multicenter study supports the use of TACE combined with ICIs and anti-VEGF antibody/TKIs as first-line treatment for advanced HCC, demonstrating an acceptable safety profile. Funding: National Natural Science Foundation of China, National Key Research and Development Program of China, Jiangsu Provincial Medical Innovation Center, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Nanjing Life Health Science and Technology Project.

16.
Medicine (Baltimore) ; 103(20): e38210, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758878

ABSTRACT

The purpose of our study is to examine the correlation between sleep factors and the prevalence of kidney stones in US adults. A total of 34,679 participants from the National Health and Nutrition Examination Survey 2007 to 2018 were included in the analyses. Sleep data collection included: presleep factors (difficulty falling asleep, sleep onset latency), intra-sleep factors (risk index of obstructive sleep apnea, restless leg syndrome, difficulty maintaining sleep), post-sleep factors (daytime sleepiness, non-restorative sleep), sleep schedule and duration, and sleep quality. Logistic regression models were used to analyze the correlation between sleep factors and the prevalence of kidney stones. Among the 34,679 participants, the overall incidence of kidney stones was 9.3%. The presence of presleep factors (difficulty falling asleep [odds ratios [OR], 1.680; 95% CI, 1.310-2.150], prolonged sleep onset latency [OR, 1.320; 95% CI, 1.020-1.700]), intra-sleep factors (higher risk index of obstructive sleep apnea [OR, 1.750; 95% CI, 1.500-2.050], restless leg syndrome [OR, 1.520; 95% CI, 1.150-1.990], difficulty maintaining sleep [OR, 1.430; 95% CI, 1.130-1.810]), post-sleep factors (daytime sleepiness [OR, 1.430; 95% CI, 1.220-1.680], non-restorative sleep [OR, 1.400; 95% CI, 1.110-1.760]), short sleep duration (OR, 1.190; 95% CI, 1.080-1.310), mediate sleep quality (OR, 1.140; 95% CI, 1.020-1.290), and poor sleep quality (OR, 1.500; 95% CI, 1.310-1.720) are linked to the occurrence of kidney stones. However, short sleep onset latency, bedtime and wake-up time were not significantly associated with the prevalence of kidney stones. These findings showed positive associations between higher kidney stone prevalence and poor sleep factors.


Subject(s)
Kidney Calculi , Humans , Male , Kidney Calculi/epidemiology , Female , United States/epidemiology , Middle Aged , Adult , Prevalence , Risk Factors , Nutrition Surveys , Sleep Apnea, Obstructive/epidemiology , Aged , Sleep Wake Disorders/epidemiology , Sleep Quality , Incidence
17.
PLoS One ; 19(5): e0302155, 2024.
Article in English | MEDLINE | ID: mdl-38701096

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is strongly associated with type 2 diabetes mellitus (T2DM). Lifestyle intervention remains a preferred treatment modality for NAFLD. The glucagon-like peptide (GLP-1) receptor agonists and sodium-glucose cotransporter-2 (SGLT-2) inhibitors have been developed as new glucose-lowering drugs, which can improve fatty liver via an insulin-independent glucose-lowering effect. However, studies exploring the efficacy of GLP-1 receptor agonists combined with SGLT-2 inhibitors in patients with NAFLD and T2DM are scanty. Thus, the present randomised controlled trial aims at comparing the efficacy and safety of semaglutide plus empagliflozin with each treatment alone in patients with NAFLD and T2DM. METHODS: This 52-week double-blinded, randomised, parallel-group, active-controlled trial evaluates the effects of semaglutide, empagliflozin and semaglutide + empagliflozin in 105 eligible overweight/obese subjects with NAFLD and T2DM. The primary outcome will be a change from baseline to week 52 in the controlled attenuation parameter, free fatty acid and glucagon. Secondary endpoints include changes in liver stiffness measurement, liver enzymes, blood glucose, lipid levels, renal function, electrolyte balances, minerals and bone metabolism, cytokines, high-sensitivity C-reactive protein, ferritin, anthropometric indicators, nonalcoholic fatty liver fibrosis score, fibrosis 4 score and homeostatic model assessment for insulin resistance. In addition, intention-to-treat, interim analysis and safety analysis will be performed. DISCUSSION: This double-blinded, randomised, clinical trial involves a multi-disciplinary approach and aims to explore the synergistic effects of the combination of semaglutide and empagliflozin. The results can provide important insights into mechanisms of GLP-1 receptor agonists and/or SGLT-2 inhibitors in patients with NAFLD and T2DM. TRIAL REGISTRATION: This study has been registered with Chinese Clinical Trial Registry (ChiCTR2300070674).


Subject(s)
Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glucagon-Like Peptides , Glucosides , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/complications , Glucosides/therapeutic use , Glucosides/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Glucagon-Like Peptides/therapeutic use , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/adverse effects , Middle Aged , Male , Double-Blind Method , Female , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/adverse effects , Adult , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Drug Therapy, Combination , Blood Glucose/metabolism , Aged , Treatment Outcome
18.
Chin J Integr Med ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753273

ABSTRACT

OBJECTIVE: To assess efficacy of Chinese medicine (CM) on insomnia considering characteristics of treatment based on syndrome differentiation. METHODS: A total of 116 participants aged 18 to 65 years with moderate and severe primary insomnia were randomized to the placebo (n=20) or the CM group (n=96) for a 4-week treatment and a 4-week follow-up. Three CM clinicians independently prescribed treatments for each patient based on syndromes differentiation. The primary outcome was change in total sleep time (TST) from baseline. Secondary endpoints included sleep onset latency (SOL), wake time after sleep onset (WASO), sleep efficiency, Pittsburgh Sleep Quality Index (PSQI) and CM symptoms. RESULTS: The CM group had an average 0.6 h more (95% confidence interval (CI): 0.3-0.9, P<0.001) TST and 34.1% (10.3%-58.0%, P=0.005) more patients beyond 0.5 h TST increment than that of the placebo group. PSQI was changed -3.3 (-3.8 to -2.7) in the CM group, a -2.0 (-3.2 to -0.8, P<0.001) difference from the placebo group. The CM symptom score in the CM group decreased -2.0 (-3.3 to -0.7, P=0.003) more than the placebo group. SOL and WASO changes were not significantly different between groups. The analysis of prescriptions by these clinicians revealed blood deficiency and Liver stagnation as the most common syndromes. Prescriptions for these clinicians displayed relative stability, while the herbs varied. All adverse events were mild and were not related to study treatment. CONCLUSION: CM treatment based on syndrome differentiation can increase TST and improve sleep quality of primary insomnia. It is effective and safe for primary insomnia. In future studies, the long-term efficacy validation and the exploratory of eutherapeutic clinicians' fixed herb formulas should be addressed (Registration No. NCT01613183).

19.
Dalton Trans ; 53(18): 8011-8019, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38651951

ABSTRACT

Designing efficient, inexpensive, and stable photocatalysts to degrade organic pollutants and antibiotics has become an effective way for environmental remediation. In this work, we successfully performed in situ growth of CdS QDs on the surface of elliptical BiVO4 to try to show the advantage of the binary heterojuncted photocatalyst (BVO@CdS) for the photocatalytic degradation of tetracycline (TC). The In situ growth of CdS QDs can provide a large number of reactive sites and also generate a larger contact area with BiVO4. In addition, compared with mechanical composite materials, in situ growth can significantly reduce the energy barrier at the interface between BiVO4 and CdS, providing more channels for the separation and migration of photogenerated charge carriers, and further improving reaction activity. As a result, BVO@CdS-0.05 shows the best degradation efficiency, with a degradation rate of 88% after 30 min under visible light. The TC photodegradation follows a pseudo-second-order reaction with a dynamic constant of 0.472 min-1, which is 6.47 times that of pure BiVO4, 7.24 times that of pure CdS QDs and 2 times that of the mechanical composite. The degradation rate of BVO@CdS-0.05 decreases to 77.8% with a retention rate of 88.5% after four cycles, demonstrating excellent stability. Through liquid chromatography-mass spectrometry (LC-MS) analysis, two possible pathways for TC degradation are proposed. Through free radical capture experiments, electron spin resonance measurements, and photoelectrochemical comprehensive analysis, it is confirmed that BVO@CdS composites have constructed an efficient Z-scheme heterojunction via in situ growth, thereby highly enhancing the separation and transport efficiency of charge carriers.

20.
J Agric Food Chem ; 72(18): 10428-10438, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38660720

ABSTRACT

Tebuconazole is a chiral triazole fungicide used globally in agriculture as a racemic mixture, but its enantiomers exhibit significant enantioselective dissimilarities in bioactivity and environmental behaviors. The steric hindrance caused by the tert-butyl group makes it a great challenge to synthesize tebuconazole enantiomers. Here, we designed a simple chemoenzymatic approach for the asymmetric synthesis of (R)-tebuconazole, which includes the biocatalytic resolution of racemic epoxy-precursor (2-tert-butyl-2-[2-(4-chlorophenyl)ethyl] oxirane, rac-1a) by Escherichia coli/Rpeh whole cells expressed epoxide hydrolase from Rhodotorula paludigensis (RpEH), followed by a one-step chemocatalytic synthesis of (R)-tebuconazole. It was observed that (S)-1a was preferentially hydrolyzed by E. coli/Rpeh, whereas (R)-1a was retained with a specific activity of 103.8 U/g wet cells and a moderate enantiomeric ratio (E value) of 13.4, which was remarkably improved to 43.8 after optimizing the reaction conditions. Additionally, a gram-scale resolution of 200 mM rac-1a was performed using 150 mg/mL E. coli/Rpeh wet cells, resulting in the retention of (R)-1a in a 97.0% ees, a 42.5% yields, and a 40.5 g/L/d space-time yield. Subsequently, the synthesis of highly optical purity (R)-tebuconazole (>99% ee) was easily achieved through the chemocatalytic ring-opening of the epoxy-precursor (R)-1a with 1,2,4-triazole. To elucidate insight into the enantioselectivity, molecular docking simulations revealed that the unique L-shaped substrate-binding pocket of RpEH plays a crucial role in the enantioselective recognition of bulky 2,2-disubstituted oxirane 1a.


Subject(s)
Biocatalysis , Epoxide Hydrolases , Fungal Proteins , Fungicides, Industrial , Rhodotorula , Triazoles , Rhodotorula/enzymology , Rhodotorula/chemistry , Rhodotorula/metabolism , Triazoles/chemistry , Triazoles/metabolism , Fungicides, Industrial/chemistry , Fungicides, Industrial/metabolism , Fungicides, Industrial/chemical synthesis , Epoxide Hydrolases/metabolism , Epoxide Hydrolases/chemistry , Stereoisomerism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Molecular Docking Simulation , Escherichia coli/enzymology , Escherichia coli/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL