Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.404
Filter
1.
Microbiol Res ; 286: 127823, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38959523

ABSTRACT

Plant-associated streptomycetes play important roles in plant growth and development. However, knowledge of volatile-mediated crosstalk between Streptomyces spp. and plants remains limited. In this study, we investigated the impact of volatiles from nine endophytic Streptomyces strains on the growth and development of plants. One versatile strain, Streptomyces setonii WY228, was found to significantly promote the growth of Arabidopsis thaliana and tomato seedlings, confer salt tolerance, and induce early flowering and increased fruit yield following volatile treatment. Analysis of plant growth-promoting traits revealed that S. setonii WY228 could produce indole-3-acetic acid, siderophores, ACC deaminase, fix nitrogen, and solubilize inorganic phosphate. These capabilities were further confirmed through genome sequencing and analysis. Volatilome analysis indicated that the volatile organic compounds emitted from ISP-2 medium predominantly comprised sesquiterpenes and 2-ethyl-5-methylpyrazine. Further investigations showed that 2-ethyl-5-methylpyrazine and sesquiterpenoid volatiles were the primary regulators promoting growth, as confirmed by experiments using the terpene synthesis inhibitor phosphomycin, pure compounds, and comparisons of volatile components. Transcriptome analysis, combined with mutant and inhibitor studies, demonstrated that WY228 volatiles promoted root growth by activating Arabidopsis auxin signaling and polar transport, and enhanced root hair development through ethylene signaling activation. Additionally, it was confirmed that volatiles can stimulate plant abscisic acid signaling and activate the MYB75 transcription factor, thereby promoting anthocyanin synthesis and enhancing plant salt stress tolerance. Our findings suggest that aerial signaling-mediated plant growth promotion and abiotic stress tolerance represent potentially overlooked mechanisms of Streptomyces-plant interactions. This study also provides an exciting strategy for the regulation of plant growth and the improvement of horticultural crop yields within sustainable agricultural practices.

2.
J Chromatogr A ; 1730: 465121, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38959659

ABSTRACT

Mechanistic models are powerful tools for chromatographic process development and optimization. However, hydrophobic interaction chromatography (HIC) mechanistic models lack an effective and logical parameter estimation method, especially for multi-component system. In this study, a parameter-by-parameter method for multi-component system (called as mPbP-HIC) was derived based on the retention mechanism to estimate the six parameters of the Mollerup isotherm for HIC. The linear parameters (ks,i and keq,i) and nonlinear parameters (ni and qmax,i) of the isotherm can be estimated by the linear regression (LR) and the linear approximation (LA) steps, respectively. The remaining two parameters (kp,i and kkin,i) are obtained by the inverse method (IM). The proposed method was verified with a two-component model system. The results showed that the model could accurately predict the protein elution at a loading of 10 g/L. However, the elution curve fitting was unsatisfactory for high loadings (12 g/L and 14 g/L), which is mainly attributed to the demanding experimental conditions of the LA step and the potential large estimation error of the parameter qmax. Therefore, the inverse method was introduced to further calibrate the parameter qmax, thereby reducing the estimation error and improving the curve fitting. Moreover, the simplified linear approximation (SLA) was proposed by reasonable assumption, which provides the initial guess of qmax without solving any complex matrix and avoids the problem of matrix unsolvable. In the improved mPbP-HIC method, qmax would be initialized by the SLA and finally determined by the inverse method, and this strategy was named as SLA+IM. The experimental validation showed that the improved mPbP-HIC method has a better curve fitting, and the use of SLA+IM reduces the error accumulation effect. In process optimization, the parameters estimated by the improved mPbP-HIC method provided the model with excellent predictive ability and reasonable extrapolation. In conclusion, the SLA+IM strategy makes the improved mPbP-HIC method more rational and can be easily applied to the practical separation of protein mixture, which would accelerate the process development for HIC in downstream of biopharmaceuticals.

3.
Eur J Med Chem ; 275: 116638, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38950489

ABSTRACT

The cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway promotes antitumor immune responses by sensing cytosolic DNA fragments leaked from nucleus and mitochondria. Herein, we designed a highly charged ruthenium photosensitizer (Ru1) with a ß-carboline alkaloid derivative as the ligand for photo-activating of the cGAS-STING pathway. Due to the formation of multiple non-covalent intermolecular interactions, Ru1 can self-assemble into carrier-free nanoparticles (NPs). By incorporating the triphenylphosphine substituents, Ru1 can target and photo-damage mitochondrial DNA (mtDNA) to cause the cytoplasmic DNA leakage to activate the cGAS-STING pathway. Finally, Ru1 NPs show potent antitumor effects and elicit intense immune responses in vivo. In conclusion, we report the first self-assembling mtDNA-targeted photosensitizer, which can effectively activate the cGAS-STING pathway, thus providing innovations for the design of new photo-immunotherapeutic agents.

4.
Waste Manag ; 187: 1-10, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968859

ABSTRACT

Disposal of electrolytes from waste lithium-ion batteries (LIBs) has gained much more attention with the growing application of LIBs, yet handling spent electrolyte is challengeable due to its high toxicity and the lack of established methods. In this study, a novel two-stage thermal process was developed for treating residual electrolytes resulted from spent lithium-ion batteries. The conversion of fluorophosphate and organic matter in oily electrolyte during low-temperature rotation distillation was investigated. The distribution and migration of the concentrated electrolytes were studied and the corresponding reaction mechanisms were elucidated. Additionally, the influence of alkali on the fixation of fluorine and phosphate was further examined. The results indicated that hydrolyzed carbonate esters and lithium in the electrolyte could combine to form Li2CO3 and the hydrolysable hexafluorophosphate was proven to be stable in the concentrated electrolyte (45 rpm/85 °C, 30 min). It was found that CO2, CO, CH4, and H2 were the primary pyrolysis gases, while the pyrolysis oil consisted of extremely flammable substances formed by the dissociation and recombination of chemical bonds in the electrolyte solvent. After pyrolysis at 300 °C, fluorine and phosphate were present in the form of sodium fluoride and sodium phosphate. The stability of the residue was enhanced, and the environmental risk was reduced. By adding alkali (KOH/Ca(OH)2, 20 %), hexafluorophosphate in the electrolyte was transformed into fluoride and phosphate in the residue, thereby reducing the device's corrosion from fluorine-containing gas. This study provides a viable approach for managing the residual electrolyte in the waste lithium battery recovery process.

5.
Biochem Biophys Res Commun ; 726: 150213, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38964186

ABSTRACT

The F11 receptor (F11R) gene encoding junctional adhesion molecule A has been associated with gastric cancer (GC) and colorectal cancer (CRC), in which its role and regulation remain to be further elucidated. Recently F11R was also identified as a potential target of adenosine-to-inosine (A-to-I) mediated by the adenosine deaminases acting on RNA (ADARs). Herein, using RNA-Seq and experimental validation, our current study revealed an F11R RNA trinucleotide over-edited by ADAR, with its regulation of gene expression and clinical significance in four GC and three CRC cohorts. Our results found an over-edited AAA trinucleotide in an AluSg located in the F11R 3'-untranslated region (3'-UTR), which showed editing levels correlated with elevated ADAR expression across all GC and CRC cohorts in our study. Overexpression and knockdown of ADAR in GC and CRC cells, followed by RNA-Seq and Sanger sequencing, confirmed the ADAR-mediated F11R 3'-UTR trinucleotide editing, which potentially disrupted an RBM45 binding site identified by crosslinking immunoprecipitation sequencing (CLIP-seq) and regulated F11R expression in luciferase reporter assays. Moreover, the F11R trinucleotide editing showed promising predictive performance for diagnosing GC and CRC across GC and CRC cohorts. Our findings thus highlight both the potential biological and clinical significance of an ADAR-edited F11R trinucleotide in GC and CRC, providing new insights into its application as a novel diagnostic biomarker for both cancers.

6.
J Geriatr Cardiol ; 21(6): 651-657, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38973824

ABSTRACT

BACKGROUND: Cardioneuroablation (CNA) has shown encouraging results in patients with vasovagal syncope (VVS). However, data on different subtypes was scarce. METHODS: This observational study retrospectively enrolled 141 patients [mean age: 40 ± 18 years, 51 males (36.2%)] with the diagnosis of VVS. The characteristics among different types of VVS and the outcomes after CNA were analyzed. RESULTS: After a mean follow-up of 4.3 ± 1.5 years, 41 patients (29.1%) experienced syncope/pre-syncope events after CNA. Syncope/pre-syncope recurrence significantly differed in each subtype (P = 0.04). The cardioinhibitory type of VVS had the lowest recurrence rate after the procedure (n = 6, 16.7%), followed by mixed (n = 26, 30.6%) and vasodepressive (n = 9, 45.0%). Additionally, a significant difference was observed in the analyses of the Kaplan-Meier survival curve (P = 0.02). Syncope/pre-syncope burden was significantly reduced after CNA in the vasodepressive type (P < 0.01). Vasodepressive types with recurrent syncope/pre-syncope after CNA have a lower baseline deceleration capacity (DC) level than those without (7.4 ± 1.0 ms vs. 9.0 ± 1.6 ms, P = 0.01). Patients with DC < 8.4 ms had an 8.1 (HR = 8.1, 95% CI: 2.2-30.0, P = 0.02) times risk of syncope/pre-syncope recurrence after CNA compared to patients with DC ≥ 8.4 ms, and this association still existed after adjusting for age and sex (HR = 8.1, 95% CI: 2.2-30.1, P = 0.02). CONCLUSIONS: Different subtypes exhibit different event-free rates. The vasodepressive type exhibited the lowest event-free rate, but those patients with DC ≥ 8.4 ms might benefit from CNA.

7.
MycoKeys ; 106: 251-264, 2024.
Article in English | MEDLINE | ID: mdl-38974462

ABSTRACT

Two novel species within the family Dictyosporiaceae are described and illustrated from terrestrial habitats on dead culms of bamboo and an unidentified plant, respectively. Through morphological comparisons and the multi-locus phylogenetic analyses of combined LSU, ITS, SSU, and tef1-α sequence dataset, two species, Gregaritheciumbambusicola, Pseudocoleophomaparaphysoidea are identified. Phylogenetically, both species clustered into a monophyletic clade with strong bootstrap support. Gregaritheciumbambusicola sp. nov. can be distinguished from other species within the genus based on its almost straight ascospores. Pseudocoleophomaparaphysoidea sp. nov. differs from other species in its conidiogenous cells intermixed with paraphyses, longer conidiogenous cells and larger conidia. The identification of this lineage contributes to our understanding of the classification of Dictyosporiaceae.

8.
Chem Commun (Camb) ; 60(54): 6889-6892, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38874540

ABSTRACT

The separation of toluene (Tol) and pyridine (Py) azeotropes is significant in the chemical industry. Herein, we present a new method for the energy-efficient separation of Tol and Py using pillar[5]arene-based adaptive macrocycle co-crystals (MCCs) that can selectively separate Py from a Py/Tol equimolar mixture with 99.2% purity, accompanied by vapochromic behavior from white to yellow.

9.
Orthop Surg ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946014

ABSTRACT

Periprosthetic femoral fractures (PPFFs) following total hip arthroplasty (THA) present a significant clinical challenge due to their increasing incidence with an aging population and evolving surgical practices. Historically, classifications were primarily based on anatomical fracture location, the stability of the implant, and bone quality surrounding the implant. We critically analyzed 25 classification systems, highlighting the emergence and adaptations of key systems such as the Vancouver classification system (VCS) and the Unified classification system (UCS), which are lauded for their simplicity and effectiveness yet require further refinement. VCS, developed in 1995, categorizes fractures based on the site, implant stability, and bone quality, and remains widely used due to its robust applicability across different clinical settings. Introduced in 2014, UCS expands the VCS to encompass all periprosthetic fractures with additional fracture types, aiming for a universal application. Despite their widespread adoption, these systems exhibit shortcomings, including the incomplete inclusion of all PPFF types and the imprecise assessment of implant stability and surrounding bone loss. These gaps can result in misclassification and suboptimal treatment outcomes. This paper suggests the necessity for ongoing improvements in classification systems to include emerging fracture types and refined diagnostic criteria, ensuring that they remain relevant to contemporary orthopedic practices and continue to facilitate the precise tailoring of treatment to patient-specific circumstances. This comprehensive historical review serves as a foundation for future innovations in classification systems, ultimately aiming to standardize PPFF treatment and improve patient prognosis.

10.
Mol Neurobiol ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38823000

ABSTRACT

In this study, we aimed to work through the key genes involved in the process of pyroptosis in Alzheimer's disease (AD) to identify potential biomarkers using bioinformatics technology and further explore the underlying molecular mechanisms. The transcriptome data of brain tissue in AD patients were screened from the GEO database, and pyroptosis-related genes were analyzed. The functions of differential genes were analyzed by enrichment analysis and protein-protein interaction. The diagnostic model was established using LASSO and logistic regression analysis, and the correlation of clinical data was analyzed. Based on single-cell analysis of brain tissues of patients with AD, immunofluorescence and western blotting were used to explore the key cells affected by the hub gene. After GSEA, qRT-PCR, western blotting, LDH, ROS, and JC-1 were used to investigate the potential mechanism of the hub gene on pyroptosis. A total of 15 pyroptosis differentially expressed genes were identified. A prediction model consisting of six genes was established by LASSO and logistic regression analysis, and the area under the curve was up to 0.81. As a hub gene, CHMP4B was negatively correlated with the severity of AD. CHMP4B expression was decreased in the hippocampal tissue of patients with AD and mice. Single-cell analysis showed that CHMP4B was downregulated in AD microglia. Overexpression of CHMP4B reduced the release of LDH and ROS and restored mitochondrial membrane potential, thereby alleviating the inflammatory response during microglial pyroptosis. In summary, CHMP4B as a hub gene provides a new strategy for the diagnosis and treatment of AD.

11.
Crit Care Med ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832833

ABSTRACT

OBJECTIVES: This study aimed to systematically assess the methodological quality and key recommendations of the guidelines for the diagnosis and treatment of liver failure (LF), furnishing constructive insights for guideline developers and equipping clinicians with evidence-based information to facilitate informed decision-making. DATA SOURCES: Electronic databases and manual searches from January 2011 to August 2023. STUDY SELECTION: Two reviewers independently screened titles and abstracts, then full texts for eligibility. Fourteen guidelines were included. DATA EXTRACTION AND SYNTHESIS: Two reviewers extracted data and checked by two others. Methodological quality of the guidelines was appraised using the Appraisal of Guidelines for Research and Evaluation II tool. Of the 14 guidelines, only the guidelines established by the Society of Critical Care Medicine and the American College of Gastroenterology (2023) achieved an aggregate quality score exceeding 60%, thereby meriting clinical recommendations. It emerged that there remains ample room for enhancement in the quality of the guidelines, particularly within the domains of stakeholder engagement, rigor, and applicability. Furthermore, an in-depth scrutiny of common recommendations and supporting evidence drawn from the 10 adult LF guidelines unveiled several key issues: controversy exists in the recommendation, the absence of supporting evidence and confusing use of evidence for recommendations, and a preference in evidence selection. CONCLUSIONS: There are high differences in methodological quality and recommendations among LF guidelines. Improving these existing problems and controversies will benefit existing clinical practice and will be an effective way for developers to upgrade the guidelines.

12.
Nanomaterials (Basel) ; 14(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38869544

ABSTRACT

We propose a controllable topological add-drop filter based on magnetic-optical photonic crystals. This add-drop filter is composed of two straight waveguides and a hexagonal photonic crystal ring resonator. The waveguide and ring resonator are constructed by three different honeycomb magnetic-optical photonic crystals. The expanded lattice is applied with an external magnetic field so that it breaks time-reversal symmetry and the analogous quantum spin Hall effect simultaneously. While the standard one and the compressed one are not magnetized and trivial, the straight waveguide supports pseudospin-down (or pseudospin-up) one-way states when the expanded lattice is applied with an external magnetic field of +H (or -H). The ring resonator possesses multiple resonant modes which can be divided into travelling modes and standing modes. By using the travelling modes, we have demonstrated the function of the add-drop filter and realized the output port control by changing the direction of the magnetic field. Moreover, a large tunable power ratio from near 0 to 52.6 is achieved by adjusting the strength of the external magnetic field. The structure has strong robustness against defects due to the topological protection property. These results have potential in wavelength division multiplexing systems and integrated topological optical devices.

13.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1092-1100, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884244

ABSTRACT

To explore the influence of climate change and human activities on grassland phenology in Anhui Pro-vince, and quantify the contribution rate of climate change and human activities to phenology, we extracted the phenology of grassland, including the start of growing season (SOS) and the end of growing season (EOS), based on the normalized difference vegetation index (NDVI) dataset of Anhui Province from 2003 to 2020. The temporal and spatial characteristics and future evolution trends of phenological changes were analyzed using slope trend ana-lysis, Mann-Kendall non-parametric test, and Hurst index. We further conducted correlation analysis and residual analysis based on the datasets of mean annual temperature and mean annual precipitation to explore the responses of phenology to climate change and human activities, and quantify their contribution rate. The results showed that SOS and EOS showed an advancing trend with a rate of 0.8 and 0.7 days per year from 2003 to 2020. SOS in the sou-thern part of the study area was significantly earlier than in the central and northern regions, while EOS gradually advanced from south to north. Both SOS and EOS in the future showed an advancing trend. SOS was negatively correlated with annual average temperature, while positively correlated with annual precipitation. EOS was negatively correlated with both annual average temperature and annual precipitation. The proportion of the area where SOS was advanced driven by both climate change and human activities was 56.9%, and the value was 48.3% for EOS. Human activities were the main driving factor for phenology, and climate change was the secondary driving factor. The relative contributions of human activities and climate change to SOS were 66.4% and 33.6%, and to EOS were 61.2% and 38.8%, respectively. Human activities had stronger impact on SOS and EOS than climate change, resulting in earlier phenology.


Subject(s)
Climate Change , Grassland , Human Activities , China , Seasons , Humans , Ecosystem , Poaceae/growth & development
14.
Sex Med ; 12(3): qfae027, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38827362

ABSTRACT

Background: There are no clear conclusions as to whether inflammatory proteins and plasma metabolites influence erectile dysfunction (ED). Aim: In this research, we used Mendelian randomization (MR) analysis to discover a causal relationship between inflammatory proteins, plasma metabolites, and ED. Methods: Raw data with ED, inflammatory proteins, and plasma metabolites were obtained from the MRC IEU OpenGWAS and FinnGen database. After a series of screenings, the remaining single nucleotide polymorphisms were selected as instrumental variables or MR analysis to assess the relationship between genetically predicted inflammatory proteins or plasma metabolites and the pathogenesis of ED. Outcomes: The relationship between inflammatory factors and ED was fully analyzed and elaborated. Results: In the inverse variance-weighted method, there exists a significant causal relationship between 4 types of genetically predicted inflammatory proteins and 50 types of plasma metabolites with the incidence of ED. The primary discovery is that 3 inflammatory proteins, fibroblast growth factor 5, interleukin-22 receptor subunit alpha-1, and protein S100-A12, can impact the risk of ED through plasma metabolites. Clinical Implications: ED metabolites and inflammatory proteins are also closely associated with cardiovascular diseases, warranting further exploration. Strengths and Limitations: Our analysis is based on a European population, limiting its generalizability, the genome-wide association study dataset for ED has a relatively small number of cases, and we hope for larger genome-wide association study datasets for future validation. Conclusion: This study has identified that inflammatory proteins can influence ED through plasma metabolites.

15.
Dalton Trans ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864748

ABSTRACT

Owing to the considerable potential of photoelectrochemical (PEC) sensors, they have gained significant attention in the analysis of biological, environmental, and food markers. However, the limited charge mass transfer efficiency and rapid recombination of electron hole pairs have become obstacles in the development of PEC sensors. In this case, considering the unique advantages of carbon-based materials, they can be used as photosensitizers, supporting materials and conductive substrates and coupled with semiconductors to prepare composite materials, solving the above problems. In addition, there are many types of carbon materials, which can have semiconductor properties and form heterojunctions after coupling with semiconductors, effectively promoting the separation of electron hole pairs. Herein, we aimed to provide a comprehensive analysis of reports on carbon-based PEC sensors by introducing their research and application status and discussing future development trends in this field. In particular, the types and performance improvement strategies of carbon-based electrodes and the working principles of carbon-based PEC sensors are explained. Furthermore, the applications of carbon-based photoelectric sensors in environmental monitoring, biomedicine, and food detection are highlighted. Finally, the current limitations in the research on carbon-based PEC sensors are emphasized and the need to enhance the sensitivity and selectivity through material modification, structural design, improved device performance, and other strategies are emphasized.

16.
BMC Musculoskelet Disord ; 25(1): 484, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38898448

ABSTRACT

BACKGROUND: Spinal fractures in patients with ankylosing spondylitis (AS) mainly present as instability, involving all three columns of the spine, and surgical intervention is often considered necessary. However, in AS patients, the significant alterations in bony structure and anatomy result in a lack of identifiable landmarks, which increases the difficulty of pedicle screw implantation. Therefore, we present the clinical outcomes of robotic-assisted percutaneous fixation for thoracolumbar fractures in patients with AS. METHODS: A retrospective review was conducted on a series of 12 patients diagnosed with AS. All patients sustained thoracolumbar fractures between October 2018 and October 2022 and underwent posterior robotic-assisted percutaneous fixation procedures. Outcomes of interest included operative time, intra-operative blood loss, complications, duration of hospital stay and fracture union. The clinical outcomes were assessed using the visual analogue scale (VAS) and Oswestry Disability Index (ODI). To investigate the achieved operative correction, pre- and postoperative radiographs in the lateral plane were analyzed by measuring the Cobb angle. RESULTS: The 12 patients had a mean age of 62.8 ± 13.0 years and a mean follow-up duration of 32.7 ± 18.9 months. Mean hospital stay duration was 15 ± 8.0 days. The mean operative time was 119.6 ± 32.2 min, and the median blood loss was 50 (50, 250) ml. The VAS value improved from 6.8 ± 0.9 preoperatively to 1.3 ± 1.0 at the final follow-up (P < 0.05). The ODI value improved from 83.6 ± 6.1% preoperatively to 11.8 ± 6.6% at the latest follow-up (P < 0.05). The average Cobb angle changed from 15.2 ± 11.0 pre-operatively to 8.3 ± 7.1 at final follow-up (P < 0.05). Bone healing was consistently achieved, with an average healing time of 6 (5.3, 7.0) months. Of the 108 screws implanted, 2 (1.9%) were improperly positioned. One patient experienced delayed nerve injury after the operation, but the nerve function returned to normal upon discharge. CONCLUSION: Posterior robotic-assisted percutaneous internal fixation can be used as an ideal surgical treatment for thoracolumbar fractures in AS patients. However, while robot-assisted pedicle screw placement can enhance the accuracy of pedicle screw insertion, it should not be relied upon solely.


Subject(s)
Fracture Fixation, Internal , Lumbar Vertebrae , Robotic Surgical Procedures , Spinal Fractures , Spondylitis, Ankylosing , Thoracic Vertebrae , Humans , Spinal Fractures/surgery , Spinal Fractures/diagnostic imaging , Spinal Fractures/etiology , Male , Middle Aged , Thoracic Vertebrae/surgery , Thoracic Vertebrae/injuries , Thoracic Vertebrae/diagnostic imaging , Female , Retrospective Studies , Spondylitis, Ankylosing/surgery , Spondylitis, Ankylosing/complications , Lumbar Vertebrae/surgery , Lumbar Vertebrae/injuries , Lumbar Vertebrae/diagnostic imaging , Robotic Surgical Procedures/methods , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/instrumentation , Treatment Outcome , Aged , Operative Time , Length of Stay , Pedicle Screws , Adult , Blood Loss, Surgical/statistics & numerical data , Follow-Up Studies
17.
Environ Int ; 190: 108835, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38908276

ABSTRACT

Combined exposure to phthalate esters (PAEs) has garnered increasing attention due to potential synergistic effects on human health. This study aimed to develop an in vitro model using human macrophages to evaluate the combined toxicity of PAEs and explore the underlying mechanisms. A high-throughput screening system was engineered by expressing a PPRE-eGFP reporter in THP-1 monocytes to monitor macrophage polarization upon PAEs exposure. Individual PAEs exhibited varied inhibitory effects on M2 macrophage polarization, with mono(2-ethylhexyl) phthalate (MEHP) being the most potent. Isobologram analysis revealed additive interactions when MEHP was combined with other PAEs, resulting in more pronounced suppression of M2 markers compared to individual compounds. Mechanistic studies suggested PAEs may exert effects by modulating PPARγ activity to inhibit M2 polarization. Notably, an equimolar mixture of six PAEs showed additive inhibition of M2 markers. In vivo experiments corroborated the combined hepatotoxic effects, with mice exposed to a PAEs mixture exhibiting reduced liver weight, dyslipidemia, and decreased hepatic M2 macrophages compared to DEHP alone. Transcriptome analysis highlighted disruptions in PPAR signaling, and distinct pathway alterations on cholesterol metabolism in the mixture group. Collectively, these findings underscore the importance of evaluating mixture effects and provide a novel approach for hazard assessment of combined PAEs exposure with implications for environmental health risk assessment.

18.
Se Pu ; 42(6): 524-532, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38845513

ABSTRACT

The stationary phase is the heart of chromatographic separation technology and a critical contributor to the overall separation performance of a chromatographic separation technique. However, traditional silicon-based materials designed for this purpose usually feature complex preparation processes, suboptimal permeability, pronounced mass-transfer resistance, and limited pH-range compatibility. These limitations have spurred ongoing research efforts aimed at developing new chromatographic stationary phases characterized by higher separation efficiency, adaptable selectivity, and a broader scope of applicability. In this context, the scientific community has made significant strides toward the development of new-generation materials suitable for use as chromatographic stationary phases. These materials include carbon-based nanomaterial arrays, carbon quantum dots, and two-dimensional (2D) materials. 2D-materials are characterized by nanometer-scale thicknesses, extensive specific surface areas, distinctive layered structures, and outstanding mechanical properties under standard conditions. Thus, these materials demonstrate excellent utility in various applications, such as electrical and thermal conductivity enhancements, gas storage and separation solutions, membrane separation technologies, and catalysis. Graphene, which is arguably the most popular 2D-material used for chromatographic separation, consists of a 2D-lattice of carbon atoms arranged in a single layer, with a large specific surface area and efficient adsorption properties. Its widespread adoption in research and various industries is a testament to its versatility and effectiveness. In addition to graphene, the scientific community has developed various 2D-materials that mirror the layered structures of graphene, such as boron nitride, transition-metal sulfides, and 2D porous organic frameworks, all of which offer unique advantages. 2D porous organic frameworks, in particular, have received attention because of their nanosheet morphology, one-dimensional pores, and special interlayer forces; thus, these frameworks are considered promising candidate chromatographic stationary phase materials. Such recognition is especially true for 2D-metal organic frameworks (MOFs) and 2D-covalent organic frameworks (COFs), which exhibit low densities, high porosities, and substantial specific surface areas. The modifiability of these materials, in terms of pore size, shape, functional groups, and layer-stacking arrangements allows for excellent separation selectivity, highlighting their promising potential in chromatographic separation. Compared with their three-dimensional counterparts, 2D-MOFs feature a simple pore structure that offers reduced mass-transfer resistance and enhanced column efficiency. These attributes highlight the advantages of 2D-MOF nanosheets as chromatographic stationary phases. Similarly, 2D-COFs, given their high specific surface area and porosity, not only exhibit great thermal stability and chemical tolerance but also support a wide selection of solvents and operational conditions. Therefore, their role in the preparation of chromatographic stationary phases is considered highly promising. This review discusses the latest research developments in 2D porous organic framework materials in the context of gas- and liquid-chromatographic stationary phases. It introduces the synthesis methods for these novel materials, elucidates their retention mechanisms, and describes the applications of other 2D-materials, such as graphene, its derivatives, graphitic carbon nitride, and boron nitride, in chromatography. This review aims to shed light on the promising development prospects and future directions of 2D-materials in the field of chromatographic separation, offering valuable insights into the rational design and application of new 2D-materials in chromatography.

19.
Opt Express ; 32(12): 21795-21805, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859525

ABSTRACT

Due to the high cost, low-performance lasers and detectors in the mid-infrared (MIR) band, the development of MIR-integrated devices is very slow. Here, we demonstrate an effective method to characterize the parameters of MIR devices by using frequency conversion technology. We designed and fabricated rib waveguides and the micro-ring resonators (MRRs) on a silicon-on-sapphire platform. The MIR laser for the test is generated by difference frequency generation, and the transmission spectrum of the MIR-MRRs is detected by sum frequency generation. The experimental results show that the waveguide transmission loss is 4.5 dB/cm and the quality factor of the micro-ring reaches 38000, which is in good agreement with the numerical simulations. This work provides a useful method to characterize MIR integrated devices based on the frequency conversion technique, which can boost the development of MIR integrated optics in the future.

20.
Article in English | MEDLINE | ID: mdl-38940328

ABSTRACT

Inspired by the charge-governed protein channels located in the cell membrane, a series of polyether ether ketone-based polymers with side chains containing ionically cross-linkable quaternary ammonium groups and acidic groups have been designed and synthesized to prepare monovalent cation-selective membranes (MCEMs). Three acidic groups (sulfonic acid, carboxylic acid, and phenolic hydroxyl) with different acid dissociation constant (pKa) were selected to form the ionic cross-linking structure with quaternary ammonium groups in the membranes. The ionic cross-linking induced the nanophase separation and constructed ionic channels, which resulted in excellent mechanical performance and high cation fluxes. Interesting, the cation flux of membranes increased as the ionization of acidic groups increase, but the selectivity of MCEMs did not follow the same trend, which was mainly dependent on the affinity between the functional groups and the cations. Carboxyl group-containing MCEMs exhibited the best selectivity (9.01 for Li+/Mg2+), which was higher than that of the commercial monovalent cation-selective CIMS membrane. Therefore, it is possible to prepare stable MCEMs through a simple process using ionically cross-linkable polymers, and tuning acidic groups in the membranes provided an attractive approach to improving the cation flux and selectivity of MCEMs.

SELECTION OF CITATIONS
SEARCH DETAIL
...