Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4755, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834568

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is a severe type of the non-alcoholic fatty liver disease (NAFLD). NASH is a growing global health concern due to its increasing morbidity, lack of well-defined biomarkers and lack of clinically effective treatments. Using metabolomic analysis, the most significantly changed active lipid sphingosine d18:1 [So(d18:1)] is selected from NASH patients. So(d18:1) inhibits macrophage HIF-2α as a direct inhibitor and promotes the inflammatory factors secretion. Male macrophage-specific HIF-2α knockout and overexpression mice verified the protective effect of HIF-2α on NASH progression. Importantly, the HIF-2α stabilizer FG-4592 alleviates liver inflammation and fibrosis in NASH, which indicated that macrophage HIF-2α is a potential drug target for NASH treatment. Overall, this study confirms that So(d18:1) promotes NASH and clarifies that So(d18:1) inhibits the transcriptional activity of HIF-2α in liver macrophages by suppressing the interaction of HIF-2α with ARNT, suggesting that macrophage HIF-2α may be a potential target for the treatment of NASH.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Macrophages , Mice, Knockout , Non-alcoholic Fatty Liver Disease , Sphingosine , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Male , Macrophages/metabolism , Macrophages/drug effects , Humans , Mice , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Liver/metabolism , Liver/pathology , Liver/drug effects , Mice, Inbred C57BL , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Disease Models, Animal
2.
Nucleic Acids Res ; 52(D1): D1327-D1332, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37650649

ABSTRACT

MicroRNAs (miRNAs) are a class of important small non-coding RNAs with critical molecular functions in almost all biological processes, and thus, they play important roles in disease diagnosis and therapy. Human MicroRNA Disease Database (HMDD) represents an important and comprehensive resource for biomedical researchers in miRNA-related medicine. Here, we introduce HMDD v4.0, which curates 53530 miRNA-disease association entries from literatures. In comparison to HMDD v3.0 released five years ago, HMDD v4.0 contains 1.5 times more entries. In addition, some new categories have been curated, including exosomal miRNAs implicated in diseases, virus-encoded miRNAs involved in human diseases, and entries containing miRNA-circRNA interactions. We also curated sex-biased miRNAs in diseases. Furthermore, in a case study, disease similarity analysis successfully revealed that sex-biased miRNAs related to developmental anomalies are associated with a number of human diseases with sex bias. HMDD can be freely visited at http://www.cuilab.cn/hmdd.


Subject(s)
Databases, Nucleic Acid , Disease , MicroRNAs , Humans , MicroRNAs/genetics , Disease/genetics
3.
Genes (Basel) ; 14(9)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37761827

ABSTRACT

It is well known that significant differences exist between males and females in both physiology and disease. Thus, it is important to identify and analyze sex-biased miRNAs. However, previous studies investigating sex differences in miRNA expression have predominantly focused on healthy individuals or restricted their analysis to a single disease. Therefore, it is necessary to comprehensively identify and analyze the sex-biased miRNAs in diseases. For this purpose, in this study, we first identified the miRNAs showing sex-biased expression between males and females in diseases based on a number of miRNA expression datasets. Then, we performed a bioinformatics analysis for these sex-biased miRNAs. Notably, our findings revealed that women exhibit a greater number of conserved miRNAs that are highly expressed compared to men, and these miRNAs are implicated in a broader spectrum of diseases. Additionally, we explored the enriched transcription factors, functions, and diseases associated with these sex-biased miRNAs using the miRNA set enrichment analysis tool TAM 2.0. The insights gained from this study could carry implications for endeavors such as precision medicine and possibly pave the way for more targeted and tailored approaches to disease management.

SELECTION OF CITATIONS
SEARCH DETAIL
...