Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(24): 10070-10074, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38855827

ABSTRACT

The separation of C2H2/CO2 mixtures is a very important but highly challenging task due to their comparable physical natures and relative sizes. Herein, we report a europium-based 3D microporous MOF with a 4-connected two-nodal net with {4·53·62}2{42·62·82} topology, {[Eu2(pzdc)(ox)2(H2O)4]·5H2O}n (1) (H2pzdc = 2,5-pyrazinedicarboxylic acid, H2ox = oxalic acid), prepared by a hydrothermal method involving in situ generation of 2,5-pyrazinedicarboxylate and oxalate ligands. Two different temperatures were utilized to create two porous materials (1a and 1b) with channels of 4.8 × 5.4 Å and 4.1 × 6.3 Å, and 4.8 × 5.4 and 4.6 × 8.7 Å2, respectively. 1b shows a superior ability to selectively capture C2H2 from C2H2/CO2 as compared with 1a. At 1 bar and 298 K, 1b takes up 4.10 mmol g-1 C2H2 and 1.84 mmol g-1 CO2, respectively. In addition, at 298 K and 1 bar, 1b has a high selectivity for C2H2 over CO2, with an IAST selectivity of 12.7 while the value for 1a is 3.2. The separation of C2H2/CO2 with 1b also exhibits good reusability.

2.
Aging (Albany NY) ; 16(9): 7928-7945, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38696318

ABSTRACT

Recently, there has been growing interest in using cell therapy through core decompression (CD) to treat osteonecrosis of the femoral head (ONFH). Our study aimed to investigate the effectiveness and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in treating steroid-induced ONFH. We constructed a steroid-induced ONFH rabbit model as well as dexamethasone (Dex)-treated bone microvascular endothelial cells (BMECs) model of human femoral head. We injected hUCMSCs into the rabbit femoral head via CD. The effects of hUCMSCs on steroid-induced ONFH rabbit model and Dex-treated BMECs were evaluated via micro-CT, microangiography, histology, immunohistochemistry, wound healing, tube formation, and western blotting assay. Furthermore, we conducted single-cell RNA sequencing (scRNA-seq) to examine the characteristics of endothelial cells, the activation of signaling pathways, and inter-cellular communication in ONFH. Our data reveal that hUCMSCs improved the femoral head microstructure and bone repair and promoted angiogenesis in the steroid-induced ONFH rabbit model. Importantly, hUCMSCs improved the migration ability and angioplasty of Dex-treated BMECs by secreting COL6A2 to activate FAK/PI3K/AKT signaling pathway via integrin α1ß1.


Subject(s)
Dexamethasone , Endothelial Cells , Femur Head Necrosis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Rabbits , Femur Head Necrosis/chemically induced , Femur Head Necrosis/therapy , Femur Head Necrosis/pathology , Humans , Mesenchymal Stem Cells/metabolism , Endothelial Cells/metabolism , Mesenchymal Stem Cell Transplantation/methods , Dexamethasone/pharmacology , Umbilical Cord/cytology , Femur Head/pathology , Disease Models, Animal , Neovascularization, Physiologic , Signal Transduction
3.
Transl Oncol ; 36: 101753, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37549606

ABSTRACT

BACKGROUND: The process of lactate metabolism has been proved to play a critical role in the progression of various cancers and to influence the immune microenvironment, but its potential role in osteosarcoma remains unclear. METHODS: We have acquired transcriptomic and clinical data from 84 osteosarcoma samples and 70 normal bone samples from the TARGET and GTEx databases. We identified differentially expressed lactate metabolism-related LncRNAs (LRLs) in osteosarcoma and performed Cox regression and LASSO regression to establish LRLs prognostic signature (LRPS). The reliability of LRPS performance was examined by separate prognostic analysis, viability curves and receiver operating characteristic (ROC) curves. Furthermore, the effects of LRPS on the immune microenvironment of osteosarcoma were investigated, and the functions of the focal genes were experimentally validated. RESULT: A total of 856 differentially expressed LRLs were identified and 5 of them were selected to construct LRPS, which was a better prognostic predictor for osteosarcoma compared with other published prognostic signatures (AUC up to 0.947 and 0.839 in the training and test groups, respectively, with adj-p<0.05 for KM curves). We found that LRPS significantly affected the immune infiltration of osteosarcoma, while RP11-472M19.2 significantly promoted the metastasis of osteosarcoma, which was well validated experimentally. Encouragingly, a number of sensitive drugs were identified for LRPS and RP11-472M19.2 high-risk groups. CONCLUSION: Our study shows that lactate metabolism plays a crucial role in the development of osteosarcoma and has been well validated experimentally, providing extremely important insights into the clinical treatment and in-depth research of osteosarcoma.

4.
Cancers (Basel) ; 15(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37190333

ABSTRACT

BACKGROUND: The defense response is a type of self-protective response of the body that protects it from damage by pathogenic factors. Although these reactions make important contributions to the occurrence and development of tumors, the role they play in osteosarcoma (OS), particularly in the immune microenvironment, remains unpredictable. METHODS: This study included the clinical information and transcriptomic data of 84 osteosarcoma samples and the microarray data of 12 mesenchymal stem cell samples and 84 osteosarcoma samples. We obtained 129 differentially expressed genes related to the defense response (DRGs) by taking the intersection of differentially expressed genes with genes involved in the defense response pathway, and prognostic genes were screened using univariate Cox regression. Least absolute shrinkage and selection operator (LASSO) penalized Cox regression and multivariate Cox regression were then used to establish a DRG prognostic signature (DGPS) via the stepwise method. DGPS performance was examined using independent prognostic analysis, survival curves, and receiver operating characteristic (ROC) curves. In addition, the molecular and immune mechanisms of adverse prognosis in high-risk populations identified by DGPS were elucidated. The results were well verified by experiments. RESULT: BNIP3, PTGIS, and ZYX were identified as the most important DRGs for OS progression (hazard ratios of 2.044, 1.485, and 0.189, respectively). DGPS demonstrated outstanding performance in the prediction of OS prognosis (area under the curve (AUC) values of 0.842 and 0.787 in the training and test sets, respectively, adj-p < 0.05 in the survival curve). DGPS also performed better than a recent clinical prognostic approach with an AUC value of only 0.674 [metastasis], which was certified in the subsequent experimental results. These three genes regulate several key biological processes, including immune receptor activity and T cell activation, and they also reduce the infiltration of some immune cells, such as B cells, CD8+ T cells, and macrophages. Encouragingly, we found that DGPS was associated with sensitivity to chemotherapeutic drugs including JNK Inhibitor VIII, TGX221, MP470, and SB52334. Finally, we verified the effect of BNIP3 on apoptosis, proliferation, and migration of osteosarcoma cells through experiments. CONCLUSIONS: This study elucidated the role and mechanism of BNIP3, PTGIS, and ZYX in OS progression and was well verified by the experimental results, enabling reliable prognostic means and treatment strategies to be proposed for OS patients.

5.
Int Immunopharmacol ; 113(Pt A): 109336, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36274486

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) is characterized by cartilage degeneration and inflammation. Procyanidin B2 (PCB2), a natural flavonoid compound, exhibits potential anti-inflammatory and anti-oxidative effects against several diseases. However, its curative effects on OA remain unclear. PURPOSE: Herein, we explored the anti-arthritic effects of PCB2 on OA onset and progress and its potential mechanism. METHODS: CCK-8 assays and EdU staining were used to assess the cytotoxic effects and cell proliferation activity of PCB2. Flow cytometry was used to detect apoptosis in chondrocytes. ELISA, qPCR, and western blotting, were applied to explore the expression of apoptosis and senescence-associated secretion phenotype (SASP) factors. The Nrf2/NF-κB signaling cascade was explored using immunofluorescence and western blotting. Additionally, we silenced the Nrf2 gene using siRNAs to verify its function in PCB2 regulation of senescence and apoptosis phenotypes. Safranin O-Fast Green (SO) and immunohistochemical staining were used to explore the effects of PCB2 on OA model rats. RESULTS: PCB2 dampened interleukin (IL)-1ß-triggered expression of SASP factors in vitro. Additionally, PCB2 diminished IL-1ß-triggered destruction of the extracellular matrix (ECM) via downregulating the expression of MMPs, while upregulating the expression of collagen II and aggrecan. In addition, PCB2 treatment reduced IL-1ß-induced apoptosis of chondrocytes. Mechanistically, PCB2 could attenuated chondrocyte senescence in vitro via the Nrf2/NF-κB pathway. Moreover, PCB2 exhibited anti-apoptotic properties via the Nrf2/BAX/Bcl-2 pathway. PCB2 alleviated knee cartilage degeneration in an OA rat model. CONCLUSIONS: Our results suggest that PCB2 may be used as a therapeutic agent for OA.


Subject(s)
NF-E2-Related Factor 2 , Osteoarthritis , Rats , Animals , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Chondrocytes , Interleukin-1beta/metabolism , Apoptosis
6.
Front Endocrinol (Lausanne) ; 13: 1030655, 2022.
Article in English | MEDLINE | ID: mdl-36313783

ABSTRACT

Sphingolipid metabolism (SM) fuels tumorigenesis and the malignant progression of osteosarcoma (OS), which leads to an unfavorable prognosis. Elucidating the molecular mechanisms underlying SM in osteosarcoma and developing a SM-based prognostic signature could be beneficial in the clinical setting. This study included 88 frozen OS samples to recognize the vital SM-relevant genes in the development of OS utilizing univariate Cox regression. The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was conducted on the SM- relevant genes to minimize the risk of overfitting. The prognostic signature was generate utilizing the multivariable Cox regression analysis and was verified in the validation cohort. Moreover, cellular and molecular mechanisms associated with SM have an unfavorable prognosis for OS patients and have been widely studied. Resultantly, an SM-based prognostic risk model was established according to critical prognostic genes (CBS, GLB1, and HACD1), which had an excellent ability to predict the prognosis of OS patients (AUC for the train cohort was 0.887 and AUC for validation cohort was 0.737). The high-risk OS patients identified based on this prognostic signature had significantly poor immune microenvironment, indicated by significantly low immune score (mean=216.290 ± 662.463), reduced infiltrations of 25 immune cells, including NK cells (LogFC= -0.3597), CD8+T cells ((LogFC=-0.2346), Cytolytic activity ((LogFC=-0.1998), etc. The immunosuppressive microenvironment could be due to dysregulated SM of glycolipids. Further, a nomogram was constructed by integrating the SM-based prognostic signature and clinical paraments to facilitate clinical application. The nomogram could accurately predict the prognosis of OS invalids. Collectively, this study clarified the function of SM in the development of OS and helped develop a tool for risk stratification based on SM-related genes with application in clinical settings. The results of our study will aid in identifying high-risk patients and provide individualized treatments.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Prognosis , Kaplan-Meier Estimate , Osteosarcoma/genetics , Bone Neoplasms/genetics , Sphingolipids , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...