Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Res Sq ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38947038

ABSTRACT

Background . The invasion of Anopheles stephensi into Africa poses a potential threat to malaria control and elimination on the continent. However, it is not clear if the recent malaria resurgence in Ethiopia has linked to the expansion of An. stephensi . We aimed to summarize the major achievements and lesson learnt in malaria control in Ethiopia from 2001 to 2022, to assess the new challenges and prospects for the control of An. stephensi . Methods and findings . We obtained the clinical malaria case reports, antimalarial drug treatment records, insecticide-treated and long-lasting insecticidal net (ITN/LLIN) distribution and utilization records, and indoor residual spraying (IRS) coverage data from the Ethiopian Ministry of Health (MoH) for the period 2001-2022. We analyzed clinical malaria hotspots using spatially optimized hotspot analysis. We investigated malaria outbreaks in 2022 and examined the potential role of An. stephensi in the outbreaks. Clinical malaria cases in Ethiopia decreased by 80%, from 5.2 million cases (11% confirmed) in 2004 to 1.0 million cases (92% confirmed) in 2018; however, cases increased steadily to 2.6 million confirmed cases (98% confirmed) in 2022. Plasmodium vivax cases and proportion have increased significantly in the past 5 years. Clinical malaria hotspots are concentrated along the western Ethiopian border areas and have grown significantly from 2017 to 2022. Major malaria outbreaks in 2022/23 were detected in multiple sites across Ethiopia, and An. stephensi was the predominant vector in some of these sites, however, it was absence from many of the outbreak sites. Conclusions. The malaria burden has been significantly reduced in Ethiopia in the past two decades, but in recent years it has increased substantially, and the cause of such increase is a subject of further investigation. Major gaps exist in An. stephensi research, including vector ecology, surveillance, and control tools, especially for adult mosquito control.

2.
Res Sq ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464038

ABSTRACT

Backgrounds: The resurgence of Anopheles funestus, a dominant vector of human malaria in western Kenya was partly attributed to insecticide resistance. However, evidence on the molecular basis of pyrethroid resistance in western Kenya is limited. Noncoding RNAs (ncRNAs) form a vast class of RNAs that do not code for proteins and are ubiquitous in the insect genome. Here, we demonstrated that multiple ncRNAs could play a potential role in An. funestusresistance to pyrethroid in western Kenya. Materials and Methods: Anopheles funestus mosquitoes were sampled by aspiration methods in Bungoma, Teso, Siaya, Port Victoria and Kombewa in western Kenya. The F1 progenies were exposed to deltamethrin (0.05%), permethrin (0.75%), DDT (4%) and pirimiphos-methyl (0.25%) following WHO test guidelines. A synergist assay using piperonyl butoxide (PBO) (4%) was conducted to determine cytochrome P450s' role in pyrethroid resistance. RNA-seq was conducted on a combined pool of specimens that were resistant and unexposed, and the results were compared with those of the FANG susceptible strain. This approach aimed to uncover the molecular mechanisms underlying pyrethroid resistance. Results: Pyrethroid resistance was observed in all the sites with an average mortality rate of 57.6%. Port Victoria had the highest level of resistance to permethrin (MR=53%) and deltamethrin (MR=11%) pyrethroids. Teso had the lowest level of resistance to permethrin (MR=70%) and deltamethrin (MR=87%). Resistance to DDT was observed only in Kombewa (MR=89%) and Port Victoria (MR=85%). A full susceptibility to P-methyl (0.25%) was observed in all the sites. PBO synergist assay revealed high susceptibility (>98%) to the pyrethroids in all the sites except for Port Victoria (MR=96%, n=100). Whole transcriptomic analysis showed that most of the gene families associated with pyrethroid resistance comprised non-coding RNAs (67%), followed by imipenemase (10%), cytochrome P450s (6%), cuticular proteins (5%), olfactory proteins (4%), glutathione S-transferases (3%), UDP-glycosyltransferases (2%), ATP-binding cassettes (2%) and carboxylesterases(1%). Conclusions: This study unveils the molecular basis of insecticide resistance in An. funestus in western Kenya, highlighting for the first time the potential role of non-coding RNAs in pyrethroid resistance. Targeting non-coding RNAs for intervention development could help in insecticide resistance management.

3.
Malar J ; 23(1): 74, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475793

ABSTRACT

BACKGROUND: Understanding of malaria ecology is a prerequisite for designing locally adapted control strategies in resource-limited settings. The aim of this study was to utilize the spatial heterogeneity in malaria transmission for the designing of adaptive interventions. METHODS: Field collections of clinical malaria incidence, asymptomatic Plasmodium infection, and malaria vector data were conducted from 108 randomly selected clusters which covered different landscape settings including irrigated farming, seasonal flooding area, lowland dryland farming, and highlands in western Kenya. Spatial heterogeneity of malaria was analyzed and classified into different eco-epidemiological zones. RESULTS: There was strong heterogeneity and detected hot/cold spots in clinical malaria incidence, Plasmodium prevalence, and vector abundance. The study area was classified into four zones based on clinical malaria incidence, parasite prevalence, vector density, and altitude. The two irrigated zones have either the highest malaria incidence, parasite prevalence, or the highest malaria vector density; the highlands have the lowest vector density and parasite prevalence; and the dryland and flooding area have the average clinical malaria incidence, parasite prevalence and vector density. Different zones have different vector species, species compositions and predominant species. Both indoor and outdoor transmission may have contributed to the malaria transmission in the area. Anopheles gambiae sensu stricto (s.s.), Anopheles arabiensis, Anopheles funestus s.s., and Anopheles leesoni had similar human blood index and malaria parasite sporozoite rate. CONCLUSION: The multi-transmission-indicator-based eco-epidemiological zone classifications will be helpful for making decisions on locally adapted malaria interventions.


Subject(s)
Anopheles , Malaria , Animals , Humans , Anopheles/parasitology , Feeding Behavior , Kenya/epidemiology , Malaria/prevention & control , Mosquito Vectors/parasitology
4.
Parasit Vectors ; 17(1): 53, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321572

ABSTRACT

BACKGROUND: Understanding the clustering of infections for persistent malaria transmission is critical to determining how and where to target specific interventions. This study aimed to determine the density, blood meal sources and malaria transmission risk of anopheline vectors by targeting malaria index cases, their neighboring households and control villages in Arjo-Didessa, southwestern Ethiopia. METHODS: An entomological study was conducted concurrently with a reactive case detection (RCD) study from November 2019 to October 2021 in Arjo Didessa and the surrounding vicinity, southwestern Ethiopia. Anopheline mosquitoes were collected indoors and outdoors in index case households and their surrounding households (neighboring households), as well as in control households, using pyrethrum spray cache (PSC) and U.S. Centers for Disease Control and Prevention (CDC) light traps. Adult mosquitoes were morphologically identified, and speciation in the Anopheles gambiae complex was done by PCR. Mosquito Plasmodium infections and host blood meal sources were detected by circumsporozoite protein enzyme-linked immunosorbent assay (CSP-ELISA) and cytochrome b-based blood meal PCR, respectively. RESULTS: Among the 770 anopheline mosquitoes collected, An. gambiae sensu lato (A. gambiae s.l.) was the predominant species, accounting for 87.1% (n = 671/770) of the catch, followed by the Anopheles coustani complex and Anopheles pharoensis, which accounted for 12.6% (n = 97/770) and 0.26% (n = 2/770) of the catch, respectively. From the sub-samples of An. gambiae s.l.analyzed with PCR, An. arabiensis and Anopheles amharicus were identified. The overall mean density of mosquitoes was 1.26 mosquitoes per trap per night using the CDC light traps. Outdoor mosquito density was significantly higher than indoor mosquito density in the index and neighboring households (P = 0.0001). The human blood index (HBI) and bovine blood index (BBI) of An. arabiensis were 20.8% (n = 34/168) and 24.0% (n = 41/168), respectively. The overall Plasmodium sporozoite infection rate of anophelines (An. arabiensis and An. coustani complex) was 4.4% (n = 34/770). Sporozoites were detected indoors and outdoors in captured anopheline mosquitoes. Of these CSP-positive species for Pv-210, Pv-247 and Pf, 41.1% (n = 14/34) were captured outdoors. A significantly higher proportion of sporozoite-infected mosquitoes were caught in index case households (5.6%, n = 8/141) compared to control households (1.1%, n = 2/181) (P = 0.02), and in neighboring households (5.3%, n = 24/448) compared to control households (P = 0.01). CONCLUSIONS: The findings of this study indicated that malaria index cases and their neighboring households had higher outdoor mosquito densities and Plasmodium infection rates. The study also highlighted a relatively higher outdoor mosquito density, which could increase the potential risk of outdoor malaria transmission and may play a role in residual malaria transmission. Thus, it is important to strengthen the implementation of vector control interventions, such as targeted indoor residual spraying, long-lasting insecticidal nets and other supplementary vector control measures such as larval source management and community engagement approaches. Furthermore, in low transmission settings, such as the Arjo Didessa Sugarcane Plantation, providing health education to local communities, enhanced environmental management and entomological surveillance, along with case detection and management by targeting of malaria index cases and their immediate neighboring households, could be important measures to control residual malaria transmission and achieve the targeted elimination goals.


Subject(s)
Anopheles , Malaria , Animals , Cattle , Humans , Mosquito Vectors , Ethiopia , Feeding Behavior , Sporozoites , Mosquito Control
5.
Am J Trop Med Hyg ; 110(3): 421-430, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38350135

ABSTRACT

Identification and mapping of larval sources are a prerequisite for effective planning and implementing mosquito larval source management (LSM). Ensemble modeling is increasingly used for prediction modeling, but it lacks standard procedures. We proposed a detailed framework to predict potential malaria vector larval habitats by using multimodel ensemble modeling, which includes selection of models, ensembling method, and predictors, evaluation of variable importance, prediction of potential larval habitats, and assessment of prediction uncertainty. The models were built and validated based on multisite, multiyear field observations and climatic/environmental variables. Model performance was tested using independent field observations. Overall, we found that the ensembled model predicted larval habitats with about 20% more accuracy than the average of the individual models ensembled. Key larval habitat predictors in western Kenya were elevation, geomorphon class, and precipitation for the 2 months prior. Additional predictors may be required to increase the predictive accuracy of the larva-positive habitats. This is the first study to provide a detailed framework for the process of multimodel ensemble modeling for malaria vector habitats. Mapping of potential habitats will be helpful in LSM planning.


Subject(s)
Anopheles , Malaria , Animals , Humans , Kenya , Larva , Malaria/prevention & control , Mosquito Vectors , Ecosystem
6.
PLoS Negl Trop Dis ; 18(2): e0011983, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38421953

ABSTRACT

Schistosomiasis is one of the world's most devastating parasitic diseases, afflicting 251 million people globally. The Neotropical snail Biomphalaria glabrata is an important intermediate host of the human blood fluke Schistosoma mansoni and a predominant model for schistosomiasis research. To fully exploit this model snail for biomedical research, here we report a haplotype-like, chromosome-level assembled and annotated genome of the homozygous iM line of B. glabrata that we developed at the University of New Mexico. Using multiple sequencing platforms, including Illumina, PacBio, and Omni-C sequencing, 18 sequence contact matrices representing 18 haploid chromosomes (2n = 36) were generated (337x genome coverage), and 96.5% of the scaffold sequences were anchored to the 18 chromosomes. Protein-coding genes (n = 34,559), non-coding RNAs (n = 2,406), and repetitive elements (42.52% of the genome) were predicted for the whole genome, and detailed annotations for individual chromosomes were also provided. Using this genomic resource, we have investigated the genomic structure and organization of the Toll-like receptor (TLR) and fibrinogen-domain containing protein (FReD) genes, the two important immune-related gene families. Notably, TLR-like genes are scattered on 13 chromosomes. In contrast, almost all (39 of 40) fibrinogen-related genes (FREPs) (immunoglobulin superfamily (IgSF) + fibrinogen (FBG)) are clustered within a 5-million nucleotide region on chromosome 13, yielding insight into mechanisms involved in the diversification of FREPs. This is the first genome of schistosomiasis vector snails that has been assembled at the chromosome level, annotated, and analyzed. It serves as a valuable resource for a deeper understanding of the biology of vector snails, especially Biomphalaria snails.


Subject(s)
Biomphalaria , Hemostatics , Schistosomiasis , Humans , Animals , Biomphalaria/genetics , Haplotypes , Fibrinogen , Chromosomes/genetics
7.
Sci Rep ; 14(1): 1820, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38245605

ABSTRACT

Vitellogenesis is the most important process in animal reproduction, in which yolk proteins play a vital role. Among multiple yolk protein precursors, vitellogenin (Vtg) is a well-known major yolk protein (MYP) in most oviparous animals. However, the nature of MYP in the freshwater gastropod snail Biomphalaria glabrata remains elusive. In the current study, we applied bioinformatics, tissue-specific transcriptomics, ovotestis-targeted proteomics, and phylogenetics to investigate the large lipid transfer protein (LLTP) superfamily and ferritin-like family in B. glabrata. Four members of LLTP superfamily (BgVtg1, BgVtg2, BgApo1, and BgApo2), one yolk ferritin (Bg yolk ferritin), and four soma ferritins (Bg ferritin 1, 2, 3, and 4) were identified in B. glabrata genome. The proteomic analysis demonstrated that, among the putative yolk proteins, BgVtg1 was the yolk protein appearing in the highest amount in the ovotestis, followed by Bg yolk ferritin. RNAseq profile showed that the leading synthesis sites of BgVtg1 and Bg yolk ferritin are in the ovotestis (presumably follicle cells) and digestive gland, respectively. Phylogenetic analysis indicated that BgVtg1 is well clustered with Vtgs of other vertebrates and invertebrates. We conclude that, vitellogenin (BgVtg1), not yolk ferritin (Bg yolk ferritin), is the major yolk protein precursor in the schistosomiasis vector snail B. glabrata.


Subject(s)
Biomphalaria , Schistosomiasis , Animals , Biomphalaria/genetics , Vitellogenins/genetics , Vitellogenins/metabolism , Multiomics , Phylogeny , Proteomics , Egg Proteins/metabolism , Ferritins/genetics , Schistosoma mansoni/metabolism
8.
Malar J ; 23(1): 36, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287365

ABSTRACT

BACKGROUND: Timely molecular surveillance of Plasmodium falciparum kelch 13 (k13) gene mutations is essential for monitoring the emergence and stemming the spread of artemisinin resistance. Widespread artemisinin resistance, as observed in Southeast Asia, would reverse significant gains that have been made against the malaria burden in Africa. The purpose of this study was to assess the prevalence of k13 polymorphisms in western Kenya and Ethiopia at sites representing varying transmission intensities between 2018 and 2022. METHODS: Dried blood spot samples collected through ongoing passive surveillance and malaria epidemiological studies, respectively, were investigated. The k13 gene was genotyped in P. falciparum isolates with high parasitaemia: 775 isolates from four sites in western Kenya (Homa Bay, Kakamega, Kisii, and Kombewa) and 319 isolates from five sites across Ethiopia (Arjo, Awash, Gambella, Dire Dawa, and Semera). DNA sequence variation and neutrality were analysed within each study site where mutant alleles were detected. RESULTS: Sixteen Kelch13 haplotypes were detected in this study. Prevalence of nonsynonymous k13 mutations was low in both western Kenya (25/783, 3.19%) and Ethiopia (5/319, 1.57%) across the study period. Two WHO-validated mutations were detected: A675V in three isolates from Kenya and R622I in four isolates from Ethiopia. Seventeen samples from Kenya carried synonymous mutations (2.17%). No synonymous mutations were detected in Ethiopia. Genetic variation analyses and tests of neutrality further suggest an excess of low frequency polymorphisms in each study site. Fu and Li's F test statistic in Semera was 0.48 (P > 0.05), suggesting potential population selection of R622I, which appeared at a relatively high frequency (3/22, 13.04%). CONCLUSIONS: This study presents an updated report on the low frequency of k13 mutations in western Kenya and Ethiopia. The WHO-validated R622I mutation, which has previously only been reported along the north-west border of Ethiopia, appeared in four isolates collected from eastern Ethiopia. The rapid expansion of R622I across Ethiopia signals the need for enhanced monitoring of the spread of drug-resistant P. falciparum parasites in East Africa. Although ACT remains currently efficacious in the study areas, continued surveillance is necessary to detect early indicators of artemisinin partial resistance.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Humans , Plasmodium falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Kenya/epidemiology , Ethiopia/epidemiology , Drug Resistance/genetics , Artemisinins/therapeutic use , Malaria, Falciparum/parasitology , Mutation , Antiparasitic Agents , Protozoan Proteins/genetics , Protozoan Proteins/therapeutic use
9.
Trends Parasitol ; 40(2): 102-105, 2024 02.
Article in English | MEDLINE | ID: mdl-38142196

ABSTRACT

The encroachment and rapid spread of Anopheles stephensi across Africa presents a significant challenge to malaria control and elimination efforts. Understanding the ecology and behavior of An. stephensi will critically inform control measures and provide prerequisite knowledge for exploring new larval and adult control tools to contain its spread.


Subject(s)
Anopheles , Malaria , Animals , Mosquito Vectors , Ecology , Africa , Malaria/prevention & control
10.
Malar J ; 22(1): 373, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066610

ABSTRACT

BACKGROUND: Anopheles stephensi is an emerging exotic invasive urban malaria vector in East Africa. The World Health Organization recently announced an initiative to take concerted actions to limit this vector's expansion by strengthening surveillance and control in invaded and potentially receptive territories in Africa. This study sought to determine the invasion of An. stephensi in southern Ethiopia. METHODS: A targeted entomological survey, both larvae and adult, was conducted in Hawassa City, southern Ethiopia between November 2022 and February 2023. Anopheles larvae were reared to adults for species identification. CDC light traps and BG Pro traps were used indoors and outdoors overnight at selected houses to collect adult mosquitoes in the study area. Prokopack aspirator was employed to sample indoor resting mosquitoes in the morning. Adults of An. stephensi was identified using morphological keys and then confirmed by PCR. RESULTS: Larvae of An. stephensi were found in 28 (16.6%) of the 169 potential mosquito breeding sites surveyed. Out of 548 adult female Anopheles mosquitoes reared from larvae, 234 (42.7%) were identified as An. stephensi morphologically. A total of 449 female anophelines were caught, of which 53 (12.0%) were An. stephensi. Other anopheline species collected in the study area included Anopheles gambiae sensu lato (s.l.), Anopheles pharoensis, Anopheles coustani, and Anopheles demeilloni. CONCLUSION: This study confirmed the presence of An. stephensi in southern Ethiopia. The presence of both larval and adult stages of this mosquito attests that this species established sympatric colonization with native vector species such as An. gambiae (s.l.) in southern Ethiopia. The findings warrant further investigation on the ecology, behaviour, population genetics, and role of An. stephensi in malaria transmission in Ethiopia.


Subject(s)
Anopheles , Malaria , Animals , Female , Malaria/epidemiology , Ethiopia/epidemiology , Mosquito Vectors , Africa, Eastern , Larva
11.
Malar J ; 22(1): 341, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37940948

ABSTRACT

BACKGROUND: Water resource development projects, such as dams and irrigation schemes, have a positive impact on food security and poverty reduction. However, such projects could increase prevalence of vector borne disease, such as malaria. This study investigate the impact of different agroecosystems and prevalence of malaria infection in Southwest Ethiopia. METHODS: Two cross-sectional surveys were conducted in the dry and wet seasons in irrigated and non-irrigated clusters of Arjo sugarcane and Gambella rice development areas of Ethiopia in 2019. A total of 4464 and 2176 study participants from 1449 households in Arjo and 546 households in Gambella enrolled in the study and blood samples were collected, respectively. All blood samples were microscopically examined and a subset of microscopy negative blood samples (n = 2244) were analysed by qPCR. Mixed effect logistic regression and generalized estimating equation were used to determine microscopic and submicroscopic malaria infection and the associated risk factors, respectively. RESULTS: Prevalence by microscopy was 2.0% (88/4464) in Arjo and 6.1% (133/2176) in Gambella. In Gambella, prevalence was significantly higher in irrigated clusters (10.4% vs 3.6%) than in non-irrigated clusters (p < 0.001), but no difference was found in Arjo (2.0% vs 2.0%; p = 0.993). On the other hand, of the 1713 and 531 samples analysed by qPCR from Arjo and Gambella the presence of submicroscopic infection was 1.2% and 12.8%, respectively. Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale were identified by qPCR in both sites. Irrigation was a risk factor for submicroscopic infection in both Arjo and Gambella. Irrigation, being a migrant worker, outdoor job, < 6 months length of stay in the area were risk factors for microscopic infection in Gambella. Moreover, school-age children and length of stay in the area for 1-3 years were significant predictors for submicroscopic malaria in Gambella. However, no ITN utilization was a predictor for both submicroscopic and microscopic infection in Arjo. Season was also a risk factor for microscopic infection in Arjo. CONCLUSION: The study highlighted the potential importance of different irrigation practices impacting on submicroscopic malaria transmission. Moreover, microscopic and submicroscopic infections coupled with population movement may contribute to residual malaria transmission and could hinder malaria control and elimination programmes in the country. Therefore, strengthening malaria surveillance and control by using highly sensitive diagnostic tools to detect low-density parasites, screening migrant workers upon arrival and departure, ensuring adequate coverage and proper utilization of vector control tools, and health education for at-risk groups residing or working in such development corridors is needed.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Oryza , Saccharum , Humans , Asymptomatic Infections/epidemiology , Cross-Sectional Studies , Ethiopia/epidemiology , Family Characteristics , Malaria/epidemiology , Malaria/parasitology , Malaria, Falciparum/parasitology , Malaria, Vivax/epidemiology , Plasmodium falciparum , Prevalence , Child
12.
Arthropod Struct Dev ; 76: 101296, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37657362

ABSTRACT

Mosquitoes rely mainly on the olfactory system to track hosts. Sensilla contain olfactory neuron receptors that perceive different kinds of odorants and transfer crucial information regarding the surrounding environment. Anopheles maculatus and An. sawadwongporni, members of the Maculatus Group, are regarded as vectors of malaria in Thailand. The fine structure of their sensilla has yet to be identified. Herein, scanning electron microscopy is used to examine the sensilla located on the antennae of adults An. maculatus and An. sawadwongporni, collected from the Thai-Myanmar border. Four major types of antennal sensilla are discovered in both species: chaetica, coeloconica, basiconica (grooved pegs) and trichodea. The antennae of female An. maculatus have longer lengths (µm, mean ± SE) in the long sharp-tipped trichodea (40.62 ± 0.35 > 38.20 ± 0.36), blunt-tipped trichodea (20.39 ± 0.62 > 18.62 ± 0.35), and basiconica (7.84 ± 0.15 > 7.41 ± 0.12) than those of An. sawadwongporni. Using light microscopy, it is found that the mean numbers of large sensilla coeloconica (lco) on both flagella in An. maculatus (left: 32.97 ± 0.48; right: 33.27 ± 0.65) are also greater when compared to An. sawadwongporni (left: 30.40 ± 0.62; right: 29.97 ± 0.49). The mean counts of lco located on flagellomeres 1-3, 6, and 9 in An. maculatus are significantly higher than those of An. sawadwongporni. The data in this study indicate that two closely related Anopheles species exhibit similar morphology of sensilla types, but show variations in length, and likewise in the number of large sensilla coeloconica between them, suggesting they might be causative factors that affect their behaviors driven by the sense of smell.


Subject(s)
Anopheles , Malaria , Female , Animals , Sensilla , Mosquito Vectors , Microscopy, Electron, Scanning
13.
Res Sq ; 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37398112

ABSTRACT

Background: Anopheles stephensi is an emerging exotic invasive urban vector of malaria in East Africa. The World Health Organization recently announced an initiative to take concerted actions to limit this vector's expansion by strengthening surveillance and control in invaded and potentially receptive territories in Africa. This study sought to determine the geographic distribution of An. stephensi in southern Ethiopia. Methods: A targeted entomological survey, both larvae and adult, was conducted in Hawassa city, Southern Ethiopia between November 2022 and February 2023. Anopheles Larvae were reared to adults for species identification. CDC light traps and BG Pro traps were used overnight both indoor and outdoor at selected houses to collect adult mosquitoes in the study area. Prokopack Aspirator was employed to sample indoor resting mosquitoes in the morning. Adults of An. stephensi was identified using morphological keys, and then confirmed by PCR. Results: Larvae of An. stephensi were found in 28 (16.6%) of the 169 potential mosquito breeding sites surveyed. Out of 548 adult female Anopheles mosquitoes reared from larvae, 234 (42.7%) were identified to be An. stephensi morphologically. A total of 449 female anophelines were caught, of which 53 (12.0%) were An. stephensi. Other anopheline species collected in the study area included An. gambiae (s.l.), An. pharoensis, An. coustani, and An. demeilloni. Conclusion: The study, for the first time, confirmed the presence of An. stephensi in southern Ethiopia. The presence of both larval and adult stages of this mosquito attest that this species established a sympatric colonization with native vector species such as An. gambiae (s.l.) in Southern Ethiopia. The findings warrant further investigation on the ecology, behavior, population genetics, and role of An. stephensi in malaria transmission in Ethiopia.

14.
J Med Entomol ; 60(4): 698-707, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37094808

ABSTRACT

Knowledge of insect dispersal is relevant to the control of agricultural pests, vector-borne transmission of human and veterinary pathogens, and insect biodiversity. Previous studies in a malaria endemic area of the Sahel region in West Africa revealed high-altitude, long-distance migration of insects and various mosquito species. The objective of the current study was to assess whether similar behavior is exhibited by mosquitoes and other insects around the Lake Victoria basin region of Kenya in East Africa. Insects were sampled monthly from dusk to dawn over 1 year using sticky nets suspended on a tethered helium-filled balloon. A total of 17,883 insects were caught on nets tethered at 90, 120, and 160 m above ground level; 818 insects were caught in control nets. Small insects (<0.5 cm, n = 15,250) were predominant regardless of height compared with large insects (>0.5 cm, n = 2,334) and mosquitoes (n = 299). Seven orders were identified; dipteran was the most common. Barcoding molecular assays of 184 mosquitoes identified 7 genera, with Culex being the most common (65.8%) and Anopheles being the least common (5.4%). The survival rate of mosquitoes, experimentally exposed to high-altitude overnight, was significantly lower than controls maintained in the laboratory (19% vs. 85%). There were no significant differences in mosquito survival and oviposition rate according to capture height. These data suggest that windborne dispersal activity of mosquito vectors of malaria and other diseases occurs on a broad scale in sub-Saharan Africa.


Subject(s)
Anopheles , Malaria , Female , Humans , Animals , Wind , Altitude , Africa, Eastern , Mosquito Vectors , Mosquito Control
15.
Parasit Vectors ; 16(1): 128, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37060070

ABSTRACT

BACKGROUND: Mosquitoes are vectors of many pathogens, such as malaria, dengue virus, yellow fever virus, filaria and Japanese encephalitis virus. Wolbachia are capable of inducing a wide range of reproductive abnormalities in their hosts, such as cytoplasmic incompatibility. Wolbachia has been proposed as a tool to modify mosquitoes that are resistant to pathogen infection as an alternative vector control strategy. This study aimed to determine natural Wolbachia infections in different mosquito species across Hainan Province, China. METHODS: Adult mosquitoes were collected using light traps, human landing catches and aspirators in five areas in Hainan Province from May 2020 to November 2021. Species were identified based on morphological characteristics, species-specific PCR and DNA barcoding of cox1 assays. Molecular classification of species and phylogenetic analyses of Wolbachia infections were conducted based on the sequences from PCR products of cox1, wsp, 16S rRNA and FtsZ gene segments. RESULTS: A total of 413 female adult mosquitoes representing 15 species were identified molecularly and analyzed. Four mosquito species (Aedes albopictus, Culex quinquefasciatus, Armigeres subalbatus and Culex gelidus) were positive for Wolbachia infection. The overall Wolbachia infection rate for all mosquitoes tested in this study was 36.1% but varied among species. Wolbachia types A, B and mixed infections of A × B were detected in Ae. albopictus mosquitoes. A total of five wsp haplotypes, six FtsZ haplotypes and six 16S rRNA haplotypes were detected from Wolbachia infections. Phylogenetic tree analysis of wsp sequences classified them into three groups (type A, B and C) of Wolbachia strains compared to two groups each for FtsZ and 16S rRNA sequences. A novel type C Wolbachia strain was detected in Cx. gelidus by both single locus wsp gene and the combination of three genes. CONCLUSION: Our study revealed the prevalence and distribution of Wolbachia in mosquitoes from Hainan Province, China. Knowledge of the prevalence and diversity of Wolbachia strains in local mosquito populations will provide part of the baseline information required for current and future Wolbachia-based vector control approaches to be conducted in Hainan Province.


Subject(s)
Aedes , Culex , Culicidae , Wolbachia , Animals , Humans , Wolbachia/genetics , RNA, Ribosomal, 16S/genetics , Phylogeny , Mosquito Vectors/genetics , Aedes/genetics , Culex/genetics , China/epidemiology
16.
Res Sq ; 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36993196

ABSTRACT

Background: Water resource development projects such as dams and irrigation schemes have a positive impact on food security and poverty reduction but might result in increased prevalence of malaria. Methods: Two cross-sectional surveys were conducted in the dry and wet seasons in irrigated and non-irrigated clusters of Arjo sugarcane and Gambella rice development areas of Ethiopia in 2019. A total of 4464 and 2176 blood samples were collected from Arjo and Gambella. A subset of 2244 microscopy negative blood samples were analyzed by PCR. Results: Prevalence by microscopy was 2.0% (88/4464) in Arjo and 6.1% (133/2176) in Gambella. In Gambella, prevalence was significantly higher in irrigated clusters (10.4% vs 3.6%) than in non-irrigated clusters (p < 0.001), but no difference was found in Arjo (2.0% vs 2.0%; p = 0.993). Level of education was an individual risk factors associated with infection in Arjo [AOR: 3.2; 95%CI (1.27-8.16)] and in Gambella [AOR: 1.7; 95%CI (1.06-2.82)]. While duration of stay in the area for < 6 months [AOR: 4.7; 95%CI (1.84-12.15)] and being a migrant worker [AOR: 4.7; 95%CI (3.01-7.17)] were risk factors in Gambella. Season [AOR: 15.9; 95%CI (6.01-42.04)], no ITN utilization [AOR: 22.3; 95%CI (7.74-64.34)] were risk factors in Arjo, and irrigation [AOR: 2.4; 95%CI (1.45-4.07)] and family size [AOR: 2.3; 95%CI (1.30-4.09)] risk factors in Gambella. Of the 1713 and 531 randomly selected smear negative samples from Arjo and Gambella and analyzed by PCR the presence of Plasmodium infection was 1.2% and 12.8%, respectively. P. falciparum, P. vivax, and P. ovale were identified by PCR in both sites. Conclusion: Strengthening malaria surveillance and control in project development areas and proper health education for at-risk groups residing or working in such development corridors is needed.

17.
Insects ; 14(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36975958

ABSTRACT

The mitochondrial marker, COII, was employed to assess the genetic structure and diversity of Anopheles funestus, a very important malaria vector in Africa that adapt and colonize different ecological niches in western Kenya. Mosquitoes were collected using mechanical aspirators in four areas (Bungoma, Port Victoria, Kombewa, and Migori) in western Kenya. Following morphological identification, PCR was used to confirm the species. The COII gene was amplified, sequenced, and analyzed to determine genetic diversity and population structure. A total of 126 (Port Victoria-38, Migori-38, Bungoma-22, and Kombewa-28) sequences of COII were used for population genetic analysis. Anopheles funestus had a high haplotype diversity (Hd = 0.97 to 0.98) but low nucleotide diversity (Π = 0.004 to 0.005). The neutrality test revealed negative Tajima's D and Fs values indicating an excess of low-frequency variation. This could be attributed to either population expansion or negative selection pressure across all the populations. No genetic or structural differentiation (Fst = -0.01) and a high level of gene flow (Gamma St, Nm = 17.99 to 35.22) were observed among the populations. Population expansion suggests the high adaptability of this species to various ecological requirements, hence sustaining its vectorial capacity and malaria transmission.

18.
J Med Entomol ; 60(1): 202-212, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36334018

ABSTRACT

Several sub-Saharan African countries rely on irrigation for food production. This study examined the impact of environmental modifications resulting from irrigation on the ecology of aquatic stages of malaria vectors in a semi-arid region of western Kenya. Mosquito larvae were collected from irrigated and non-irrigated ecosystems during seasonal cross-sectional and monthly longitudinal studies to assess habitat availability, stability, and productivity of anophelines in temporary, semipermanent, and permanent habitats during the dry and wet seasons. The duration of habitat stability was also compared between selected habitats. Emergence traps were used to determine the daily production of female adult mosquitoes from different habitat types. Malaria vectors were morphologically identified and sibling species subjected to molecular analysis. Data was statistically compared between the two ecosystems. After aggregating the data, the overall malaria vector productivity for habitats in the two ecosystems was estimated. Immatures of the malaria vector (Anopheles arabiensis) Patton (Diptera: Culicidae) comprised 98.3% of the Anopheles in both the irrigated and non-irrigated habitats. The irrigated ecosystem had the most habitats, higher larval densities, and produced 85.8% of emerged adult females. These results showed that irrigation provided conditions that increased habitat availability, stability, and diversity, consequently increasing the An. arabiensis production and potential risk of malaria transmission throughout the year. The irrigated ecosystems increased the number of habitats suitable for Anopheles breeding by about 3-fold compared to non-irrigated ecosystems. These results suggest that water management in the irrigation systems of western Kenya would serve as an effective method for malaria vector control.


Subject(s)
Anopheles , Malaria , Female , Animals , Ecosystem , Kenya , Cross-Sectional Studies , Mosquito Vectors , Larva
19.
Insects ; 13(11)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36354859

ABSTRACT

The occurrence and spread of insecticide resistance has had a negative effect on the efficacy of insecticide-based tools and is distributed worldwide, including the Greater Mekong Subregion (GMS). This study aims to determine the insecticide susceptibility of malaria and dengue vectors in malaria and dengue hotspots on the Thai-Myanmar border. Mosquito larvae and pupae were obtained from water sources from December 2019 to April 2020 in Tha Song Yang District, Tak province, western Thailand. WHO bioassay susceptibility tests were conducted with three classes of insecticides to evaluate the knockdown and mortality rates of Anopheles and Aedes aegypti female adults. V1016G and F1534C kdr mutations in the voltage-gated sodium channel of Ae. aegypti were identified using a multiplex PCR. A total of 5764 female mosquitoes were bioassayed in this study, including Anopheles spp. (92.63%) and F1 Ae. aegypti (7.37%). After 24 h of observation, An. minimus s.l. (n = 3885) and An. maculatus s.l. (n = 1138) in Suan Oi (SO) and Tala Oka (TO) were susceptible to pyrethroids, organophosphates and carbamates (except bendiocarb) with 98-100% mortality (MR). Resistance to bendiocarb was detected with a mortality rate of 88.80%, 88.77%, and 89.92% for An. minimus s.l. (n = 125, 125) and An. maculatus s.l. (n = 66), respectively. The first generation of Ae. aegypti adult females were suspected of resistance to deltamethrin (n = 225, MR = 96.89%) and confirmed resistance to permethrin (n = 200, MR = 20.00%). V1016G and F1534C mutations were detected in three genotypes, heterozygote and homozygote forms. The correlation between the kdr alleles and deltamethrin resistance was significant. In conclusion, bendiocarb resistance was found in primary malaria vectors, An. minimus s.l. and An. maculatus s.l. F1 Ae. aegypti population was pyrethroids-resistant, associated with kdr alleles. Therefore, molecular analysis should be conducted to gain insights into the mechanism of insecticide resistance. Routine malaria vector control programmes, such as fogging implementation in hotspot villages to induce Aedes resistance available in peri-domestic sites, are questionable.

20.
Front Public Health ; 10: 1028026, 2022.
Article in English | MEDLINE | ID: mdl-36438226

ABSTRACT

Introduction: Since the second half of the 20th century, Aedes albopictus, a vector for more than 20 arboviruses, has spread worldwide. Aedes albopictus is the main vector of infectious diseases transmitted by Aedes mosquitoes in China, and it has caused concerns regarding public health. A comprehensive understanding of the spatial genetic structure of this vector species at a genomic level is essential for effective vector control and the prevention of vector-borne diseases. Methods: During 2016-2018, adult female Ae. albopictus mosquitoes were collected from eight different geographical locations across China. Restriction site-associated DNA sequencing (RAD-seq) was used for high-throughput identification of single nucleotide polymorphisms (SNPs) and genotyping of the Ae. albopictus population. The spatial genetic structure was analyzed and compared to those exhibited by mitochondrial cytochrome c oxidase subunit 1 (cox1) and microsatellites in the Ae. albopictus population. Results: A total of 9,103 genome-wide SNP loci in 101 specimens and 32 haplotypes of cox1 in 231 specimens were identified in the samples from eight locations in China. Principal component analysis revealed that samples from Lingshui and Zhanjiang were more genetically different than those from the other locations. The SNPs provided a better resolution and stronger signals for novel spatial population genetic structures than those from the cox1 data and a set of previously genotyped microsatellites. The fixation indexes from the SNP dataset showed shallow but significant genetic differentiation in the population. The Mantel test indicated a positive correlation between genetic distance and geographical distance. However, the asymmetric gene flow was detected among the populations, and it was higher from south to north and west to east than in the opposite directions. Conclusions: The genome-wide SNPs revealed seven gene pools and fine spatial genetic structure of the Ae. albopictus population in China. The RAD-seq approach has great potential to increase our understanding of the spatial dynamics of population spread and establishment, which will help us to design new strategies for controlling vectors and mosquito-borne diseases.


Subject(s)
Aedes , Animals , Female , Aedes/genetics , Polymorphism, Single Nucleotide , Mosquito Vectors/genetics , Genetic Variation , China , Genetic Structures
SELECTION OF CITATIONS
SEARCH DETAIL
...