Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Commun Biol ; 6(1): 1259, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38086994

ABSTRACT

Interrogation of subcellular biological dynamics occurring in a living cell often requires noninvasive imaging of the fragile cell with high spatiotemporal resolution across all three dimensions. It thereby poses big challenges to modern fluorescence microscopy implementations because the limited photon budget in a live-cell imaging task makes the achievable performance of conventional microscopy approaches compromise between their spatial resolution, volumetric imaging speed, and phototoxicity. Here, we incorporate a two-stage view-channel-depth (VCD) deep-learning reconstruction strategy with a Fourier light-field microscope based on diffractive optical element to realize fast 3D super-resolution reconstructions of intracellular dynamics from single diffraction-limited 2D light-filed measurements. This VCD-enabled Fourier light-filed imaging approach (F-VCD), achieves video-rate (50 volumes per second) 3D imaging of intracellular dynamics at a high spatiotemporal resolution of ~180 nm × 180 nm × 400 nm and strong noise-resistant capability, with which light field images with a signal-to-noise ratio (SNR) down to -1.62 dB could be well reconstructed. With this approach, we successfully demonstrate the 4D imaging of intracellular organelle dynamics, e.g., mitochondria fission and fusion, with ~5000 times of observation.


Subject(s)
Imaging, Three-Dimensional , Mitochondria , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods
2.
Opt Lett ; 48(2): 195-198, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36638416

ABSTRACT

Multi-parametric photoacoustic microscopy (PAM) is uniquely capable of simultaneous high-resolution mapping of blood oxygenation and flow in vivo. However, its speed has been limited by the dense sampling required for blood flow quantification. To overcome this limitation, we have developed a high-speed multi-parametric PAM system, which enables simultaneous acquisition of ∼500 densely sampled B-scans by superposing the rapid optical scanning across the line-shaped focus of a cylindrically focused ultrasonic transducer over the conventional mechanical scan of the optical-acoustic dual foci. A novel, to the best of our knowledge, optical-acoustic combiner (OAC) is designed and implemented to accommodate the short working distance of the transducer, enabling convenient confocal alignment of the dual foci in reflection mode. A resonant galvanometer (GM) provides stabilized high-speed large-angle scanning. This new system can continuously monitor microvascular blood oxygenation (sO2) and flow over a 4.5 × 3 mm2 area in the awake mouse brain with high spatial and temporal resolutions (6.9 µm and 0.3 Hz, respectively).


Subject(s)
Microscopy , Photoacoustic Techniques , Animals , Mice , Acoustics , Spectrum Analysis , Transducers
3.
Nature ; 611(7936): 585-593, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36352225

ABSTRACT

Macrophages are important players in the maintenance of tissue homeostasis1. Perivascular and leptomeningeal macrophages reside near the central nervous system (CNS) parenchyma2, and their role in CNS physiology has not been sufficiently well studied. Given their continuous interaction with the cerebrospinal fluid (CSF) and strategic positioning, we refer to these cells collectively as parenchymal border macrophages (PBMs). Here we demonstrate that PBMs regulate CSF flow dynamics. We identify a subpopulation of PBMs that express high levels of CD163 and LYVE1 (scavenger receptor proteins), closely associated with the brain arterial tree, and show that LYVE1+ PBMs regulate arterial motion that drives CSF flow. Pharmacological or genetic depletion of PBMs led to accumulation of extracellular matrix proteins, obstructing CSF access to perivascular spaces and impairing CNS perfusion and clearance. Ageing-associated alterations in PBMs and impairment of CSF dynamics were restored after intracisternal injection of macrophage colony-stimulating factor. Single-nucleus RNA sequencing data obtained from patients with Alzheimer's disease (AD) and from non-AD individuals point to changes in phagocytosis, endocytosis and interferon-γ signalling on PBMs, pathways that are corroborated in a mouse model of AD. Collectively, our results identify PBMs as new cellular regulators of CSF flow dynamics, which could be targeted pharmacologically to alleviate brain clearance deficits associated with ageing and AD.


Subject(s)
Central Nervous System , Cerebrospinal Fluid , Macrophages , Parenchymal Tissue , Animals , Mice , Alzheimer Disease/metabolism , Brain/metabolism , Central Nervous System/cytology , Central Nervous System/metabolism , Cerebrospinal Fluid/metabolism , Macrophages/physiology , Meninges/cytology , Rheology , Extracellular Matrix Proteins/metabolism , Aging/metabolism , Phagocytosis , Endocytosis , Interferon-gamma/metabolism , Parenchymal Tissue/cytology , Humans
4.
Biomed Opt Express ; 13(5): 2695-2706, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35774317

ABSTRACT

Cutaneous wounds affect millions of people every year. Vascularization and blood oxygen delivery are critical bottlenecks in wound healing, and understanding the spatiotemporal dynamics of these processes may lead to more effective therapeutic strategies to accelerate wound healing. In this work, we applied multi-parametric photoacoustic microscopy (PAM) to study vascular adaptation and the associated changes in blood oxygen delivery and tissue oxygen metabolism throughout the hemostasis, inflammatory, proliferation, and early remodeling phases of wound healing in mice with skin puncture wounds. Multifaceted changes in the vascular structure, function, and tissue oxygen metabolism were observed during the 14-day monitoring of wound healing. On the entire wound area, significant elevations of the arterial blood flow and tissue oxygen metabolism were observed right after wounding and remained well above the baseline over the 14-day period. On the healing front, biphasic changes in the vascular density and blood flow were observed, both of which peaked on day 1, remained elevated in the first week, and returned to the baselines by day 14. Along with the wound closure and thickening, tissue oxygen metabolism in the healing front remained elevated even after structural and functional changes in the vasculature were stabilized. On the newly formed tissue, significantly higher blood oxygenation, flow, and tissue metabolism were observed compared to those before wounding. Blood oxygenation and flow in the new tissue appeared to be independent of when it was formed, but instead showed noticeable dependence on the phase of wound healing. This PAM study provides new insights into the structural, functional, and metabolic changes associated with vascular adaptation during wound healing and suggests that the timing and target of vascular treatments for wound healing may affect the outcomes.

5.
Opt Lett ; 47(8): 1988-1991, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35427318

ABSTRACT

The ability of hemodilution to improve vascular circulatory impairment has been demonstrated. However, the effects of acute hemodilution on cerebral hemodynamics and oxygen metabolism have not been assessed at the microscopic level, due to technical limitations. To fill this void, we have developed a new, to the best of our knowledge, photoacoustic microscopy system, which enables high-speed imaging of blood hemoglobin concentration, oxygenation, flow, and oxygen metabolism in vivo. The system performance was examined in both phantoms and the awake mouse brain. This new technique enabled wide-field (4.5 × 3 mm2) multi-parametric imaging of the mouse cortex at 1 frame/min. Narrowing the field of view to 1.5 × 1.5 mm2 allowed dynamic imaging of the cerebral hemodynamic and metabolic responses to acute hypervolemic hemodilution at 6 frames/min. Quantitative analysis of the hemodilution-induced cerebrovascular responses over time showed rapid increases in the vessel diameter (within 50-210 s) and blood flow (50-210 s), as well as decreases in the hemoglobin concentration (10-480 s) and metabolic rate of oxygen (20-480 s) after the acute hemodilution, followed by a gradual recovery to the baseline levels in 1440 s. Providing comprehensive insights into dynamic changes of the cerebrovascular structure and function in vivo, this technique opens new opportunities for mechanistic studies of acute brain diseases or responses to various stimuli.


Subject(s)
Hemodilution , Microscopy , Animals , Cerebrovascular Circulation , Hemodynamics/physiology , Hemoglobins , Mice , Microscopy/methods , Oxygen/metabolism
6.
J Cereb Blood Flow Metab ; 41(12): 3187-3199, 2021 12.
Article in English | MEDLINE | ID: mdl-34304622

ABSTRACT

Multi-parametric photoacoustic microscopy (PAM) has emerged as a promising new technique for high-resolution quantification of hemodynamics and oxygen metabolism in the mouse brain. In this work, we have extended the scope of multi-parametric PAM to longitudinal, cortex-wide, awake-brain imaging with the use of a long-lifetime (24 weeks), wide-field (5 × 7 mm2), light-weight (2 g), dual-transparency (i.e., light and ultrasound) cranial window. Cerebrovascular responses to the window installation were examined in vivo, showing a complete recovery in 18 days. In the 22-week monitoring after the recovery, no dura thickening, skull regrowth, or changes in cerebrovascular structure and function were observed. The promise of this technique was demonstrated by monitoring vascular and metabolic responses of the awake mouse brain to ischemic stroke throughout the acute, subacute, and chronic stages. Side-by-side comparison of the responses in the ipsilateral (injury) and contralateral (control) cortices shows that despite an early recovery of cerebral blood flow and an increase in microvessel density, a long-lasting deficit in cerebral oxygen metabolism was observed throughout the chronic stage in the injured cortex, part of which proceeded to infarction. This longitudinal, functional-metabolic imaging technique opens new opportunities to study the chronic progression and therapeutic responses of neurovascular diseases.


Subject(s)
Brain/metabolism , Cerebrovascular Circulation , Ischemic Stroke/metabolism , Microscopy , Oxygen/metabolism , Photoacoustic Techniques , Animals , Brain/physiopathology , Ischemic Stroke/physiopathology , Male , Mice
7.
Opt Lett ; 46(11): 2561-2564, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34061056

ABSTRACT

Pathological aggregation of Aß peptides results in the deposition of amyloid in the brain parenchyma (senile plaques in Alzheimer's disease [AD]) and around cerebral microvessels (cerebral amyloid angiopathy [CAA]). Our current understanding of the amyloid-induced microvascular changes has been limited to the structure and hemodynamics-leaving the oxygen-metabolic aspect unattended. In this Letter, we report a dual-contrast photoacoustic microscopy (PAM) technique, which integrates the molecular contrast of dichroism PAM and the physiological contrast of multi-parametric PAM for simultaneous, intravital imaging of amyloid deposition and cerebrovascular function in a mouse model that develops AD and CAA. This technique opens up new opportunities to study the spatiotemporal interplay between amyloid deposition and vascular-metabolic dysfunction in AD and CAA.


Subject(s)
Cerebral Amyloid Angiopathy , Plaque, Amyloid , Animals , Mice , Microscopy
8.
Opt Lett ; 46(11): 2690-2693, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34061089

ABSTRACT

Improving the imaging speed of multi-parametric photoacoustic microscopy (PAM) is essential to leveraging its impact in biomedicine. However, to avoid temporal overlap, the A-line rate is limited by the acoustic speed in biological tissues to a few megahertz. Moreover, to achieve high-speed PAM of the oxygen saturation of hemoglobin, the stimulated Raman scattering effect in optical fibers has been widely used to generate 558 nm from a commercial 532 nm laser for dual-wavelength excitation. However, the fiber length for effective wavelength conversion is typically short, corresponding to a small time delay that leads to a significant overlap of the A-lines acquired at the two wavelengths. Increasing the fiber length extends the time interval but limits the pulse energy at 558 nm. In this Letter, we report a conditional generative adversarial network-based approach that enables temporal unmixing of photoacoustic A-line signals with an interval as short as ${\sim}{38}\;{\rm ns}$, breaking the physical limit on the A-line rate. Moreover, this deep learning approach allows the use of multi-spectral laser pulses for PAM excitation, addressing the insufficient energy of monochromatic laser pulses. This technique lays the foundation for ultrahigh-speed multi-parametric PAM.


Subject(s)
Deep Learning , Photoacoustic Techniques
9.
Opt Lett ; 45(10): 2756-2759, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32412459

ABSTRACT

Capable of imaging blood perfusion, oxygenation, and flow simultaneously at the microscopic level, multi-parametric photoacoustic microscopy (PAM) has quickly emerged as a powerful tool for studying hemodynamic and metabolic changes due to physiological stimulations or pathological processes. However, the low scanning speed poised by the correlation-based blood flow measurement impedes its application in studying rapid microvascular responses. To address this challenge, we have developed a new, to the best of our knowledge, multi-parametric PAM system. By extending the optical scanning range with a cylindrically focused ultrasonic transducer (focal zone, 76µm×4.5mm) for simultaneous acquisition of 500 B-scans, the new system is 112 times faster than our previous multi-parametric system that uses a spherically focused transducer (focal diameter, 40 µm) and enables high-resolution imaging of blood perfusion, oxygenation, and flow over an area of 4.5×1mm2 at a frame rate of 1 Hz. We have demonstrated the feasibility of this system in the living mouse ear. Further development of this system into reflection mode will enable real-time cortex-wide imaging of hemodynamics and metabolism in the mouse brain.

10.
Rev Sci Instrum ; 88(9): 095109, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28964181

ABSTRACT

Straightness error is a parasitic translation along a perpendicular direction to the primary displacement axis of a linear stage. The parasitic translations could be coupled into other primary displacement directions of a multi-axis platform. Hence, its measurement and compensation are critical in precision multi-axis metrology, calibration, and manufacturing. This paper presents a two-dimensional (2D) straightness measurement configuration based on 2D optical knife-edge sensing, which is simple, light-weight, compact, and easy to align. It applies a 2D optical knife-edge to manipulate the diffraction pattern sensed by a quadrant photodetector, whose output voltages could derive 2D straightness errors after a calibration process. This paper analyzes the physical model of the configuration and performs simulations and experiments to study the system sensitivity, measurement nonlinearity, and error sources. The results demonstrate that the proposed configuration has higher sensitivity and insensitive to beam's vibration, compared with the conventional configurations without using the knife-edge, and could achieve ±0.25 µm within a ±40 µm measurement range along a 40 mm primary axial motion.

SELECTION OF CITATIONS
SEARCH DETAIL
...