Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Nat Genet ; 56(4): 697-709, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509386

ABSTRACT

In mice, exit from the totipotent two-cell (2C) stage embryo requires silencing of the 2C-associated transcriptional program. However, the molecular mechanisms involved in this process remain poorly understood. Here we demonstrate that the 2C-specific transcription factor double homeobox protein (DUX) mediates an essential negative feedback loop by inducing the expression of DUXBL to promote this silencing. We show that DUXBL gains accessibility to DUX-bound regions specifically upon DUX expression. Furthermore, we determine that DUXBL interacts with TRIM24 and TRIM33, members of the TRIM superfamily involved in gene silencing, and colocalizes with them in nuclear foci upon DUX expression. Importantly, DUXBL overexpression impairs 2C-associated transcription, whereas Duxbl inactivation in mouse embryonic stem cells increases DUX-dependent induction of the 2C-transcriptional program. Consequently, DUXBL deficiency in embryos results in sustained expression of 2C-associated transcripts leading to early developmental arrest. Our study identifies DUXBL as an essential regulator of totipotency exit enabling the first divergence of cell fates.


Subject(s)
Genes, Homeobox , Homeodomain Proteins , Mouse Embryonic Stem Cells , Transcription Factors , Animals , Mice , Cell Differentiation , Gene Expression Regulation , Gene Expression Regulation, Developmental/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Mouse Embryonic Stem Cells/metabolism
2.
J Neurooncol ; 165(1): 79-90, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37819535

ABSTRACT

BACKGROUND: The efficacy of current immunotherapeutic strategies for patients with glioblastoma multiforme (GBM) remains unsatisfactory. The purpose of this study was to investigate the correlation between tumor necrosis factor alpha-induced protein 2 (TNFAIP2) and immunogenic cell death (ICD) in GBM, and to examine the effect of TNFAIP2 knockdown and anti-PD-1 combination treatment in a mouse glioma model. METHODS: The CGGA and TCGA databases were used to explore the possible function of TNFAIP2 in GBM. Multiplex immunohistochemistry (mIHC) staining was performed to detect the immune infiltration of tissues. Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), flow cytometry, and enzyme linked immunosorbent assay (ELISA) were utilized to detect the release of damage-associated molecular patterns (DAMPs) and the activation of the immune response. A mouse glioma model was applied to examine the induction of immune response. RESULTS: In vitro and in vivo studies demonstrated that TNFAIP2 knockdown increased the surface exposure of calreticulin (CALR), heat shock protein 70 kDa (HSP70), and heat shock protein 90 kDa (HSP90) in GBM cell lines, thereby inducing immunogenic cell death (ICD). Importantly, the study found that TNFAIP2 knockdown in combination with anti-PD-1 therapy significantly improved the overall survival of glioma in a mouse model. CONCLUSIONS: TNFAIP2 knockdown induces ICD by downregulating TNFAIP2 in GBM. In addition, TNFAIP2 knockdown sensitized glioma to anti-PD-1 therapy. Hence, targeting TNFAIP2 alone or in combination with anti-PD-1 therapy may be a potential strategy for GBM treatment through ICD.


Subject(s)
Glioblastoma , Glioma , Animals , Mice , Humans , Glioblastoma/pathology , Immunogenic Cell Death , Glioma/pathology , Cell Line , Disease Models, Animal , Cell Line, Tumor , Cytokines
3.
J Neurooncol ; 163(3): 607-622, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37351767

ABSTRACT

PURPOSE: Glioma is a life-threatening malignancy where conventional therapies are ineffective. Bacterial cancer therapy has shown potential for glioma treatment, in particular, the facultative anaerobe Salmonella has been extensively studied. Meanwhile, ferroptosis is a newly characterized form of cell death. Nevertheless, the role of ferroptosis in Salmonella-induced tumour cell death remains unclear. Therefore, we aim to elucidate whether Salmonella YB1 exerts therapeutic effects via inducing ferroptosis in glioma. METHODS: Following Salmonella YB1 infection, mRNA sequencing was applied to detect ferroptosis-related gene expression and the levels of reactive oxygen species, malondialdehyde, and glutathione were quantified. Transmission electron microscopy (TEM) was then used to observe the changes in the mitochondrial morphology of glioma cells. The role of ferroptosis in the anti-tumor effect of YB1 was assessed in vivo in mouse tumor xenograft models. RESULTS: Whole-transcriptome analysis revealed that Salmonella YB1 infection alters ferroptosis-related gene expression in the U87 glioma cell line. Moreover, we found that Salmonella-induced ferroptosis is correlated with reduced levels of glutathione and glutathione peroxidase-4 (GPX4) and increased levels of reactive oxygen species and malondialdehyde in vitro. Meanwhile, TEM revealed that mitochondria are shrunken and mitochondrial membrane density increases in infected glioma cells. Experiments in vivo further showed that tumor growth in the Salmonella-treated group was significantly slower compared to the control and Fer-1 groups. However, Salmonella-induced tumor suppression can be reversed in vivo by Fer-1 treatment. CONCLUSION: Salmonella YB1 inhibits GPX4 expression and induces ferroptosis to suppress glioma growth. Hence, ferroptosis regulation might represent a promising strategy to improve the efficacy of bacterial cancer therapy.


Subject(s)
Ferroptosis , Glioma , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Humans , Mice , Disease Models, Animal , Glioma/genetics , Glioma/metabolism , Glutathione/metabolism , Malondialdehyde/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Reactive Oxygen Species , Salmonella/metabolism
4.
Int J Pharm ; 636: 122851, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36931535

ABSTRACT

The postoperative thrombus attached to the damaged blood vessels severely obstructs drugs from crossing the damaged blood-brain barrier (BBB) and targeting residual glioma cells around surgical margins, leading to glioblastoma (GBM) recurrence. A thrombus-bypassing, BBB-crossing, and surgical margin-targeted nanodrug is needed to address this phenomenon. Encouraged by the intrinsic damaged vascular endothelium chemotaxis of platelets, a platelet membrane-coated nanodrug (PM-HDOX) delivering doxorubicin (DOX) for postoperative GBM treatment is proposed and systematically investigated. Because surgery damages the vascular endothelium on the BBB around the surgical margin, the platelet membrane coating endows PM-HDOX with its inherent capacity to cross the broken BBB and target the surgical margin. Moreover, preoperative administration combined with fast-targeted PM-HDOX can realize the potential of bypassing thrombus. In GBM resection models, PM-HDOX with preoperative administration demonstrated significantly enhanced BBB-crossing and surgical margin-targeted efficacy. In particular, the PM-HDOX intensities around the surgical margins of the preoperative administration group were more than twice that of the postoperative administration group due to bypassing the thrombus formed in the broken BBB. In the antitumor experiment, the preoperative administration of PM-HDOX significantly inhibited the growth of postoperative residual tumors and prolonged the median survival time of mice. In conclusion, preoperative administration of a biomimetic platelet nanodrug can be an efficient and promising drug delivery strategy for residual GBM after surgery.


Subject(s)
Brain Neoplasms , Glioblastoma , Nanoparticles , Thrombosis , Mice , Animals , Margins of Excision , Blood Platelets/pathology , Biomimetics , Brain Neoplasms/drug therapy , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Drug Delivery Systems , Blood-Brain Barrier , Glioblastoma/drug therapy , Glioblastoma/surgery , Glioblastoma/pathology , Thrombosis/drug therapy , Nanoparticles/therapeutic use , Cell Line, Tumor
5.
Int J Mol Sci ; 24(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36768494

ABSTRACT

Due to the limitations of culture techniques, the lung in a healthy state is traditionally considered to be a sterile organ. With the development of non-culture-dependent techniques, the presence of low-biomass microbiomes in the lungs has been identified. The species of the lung microbiome are similar to those of the oral microbiome, suggesting that the microbiome is derived passively within the lungs from the oral cavity via micro-aspiration. Elimination, immigration, and relative growth within its communities all contribute to the composition of the lung microbiome. The lung microbiome is reportedly altered in many lung diseases that have not traditionally been considered infectious or microbial, and potential pathways of microbe-host crosstalk are emerging. Recent studies have shown that the lung microbiome also plays an important role in brain autoimmunity. There is a close relationship between the lungs and the brain, which can be called the lung-brain axis. However, the problem now is that it is not well understood how the lung microbiota plays a role in the disease-specifically, whether there is a causal connection between disease and the lung microbiome. The lung microbiome includes bacteria, archaea, fungi, protozoa, and viruses. However, fungi and viruses have not been fully studied compared to bacteria in the lungs. In this review, we mainly discuss the role of the lung microbiome in chronic lung diseases and, in particular, we summarize the recent progress of the lung microbiome in multiple sclerosis, as well as the lung-brain axis.


Subject(s)
Brain Diseases , Lung Diseases , Microbiota , Humans , Lung , Bacteria
6.
Front Genet ; 13: 1026192, 2022.
Article in English | MEDLINE | ID: mdl-36353102

ABSTRACT

Background: Glioma has the highest fatality rate among intracranial tumours. Besides, the heterogeneity of gliomas leads to different therapeutic effects even with the same treatment. Developing a new signature for glioma to achieve the concept of "personalised medicine" remains a significant challenge. Method: The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) were searched to acquire information on glioma patients. Initially, correlation and univariate Cox regression analyses were performed to screen for prognostic pyroptosis-related long noncoding RNAs (PRLs). Secondly, 11 PRLs were selected to construct the classifier using certain algorithms. The efficacy of the classifier was then detected by the "timeROC" package for both the training and validation datasets. CIBERSORT and ESTIMATE packages were applied for comparing the differences (variations) in the immune landscape between the high- and low-risk groups. Finally, the therapeutic efficacy of the chemotherapy, radiotherapy, and immunotherapy were assessed using the "oncoPredict" package, survival analysis, and the tumour immune dysfunction and exclusion (TIDE) score, respectively. Results: A classifier comprising 11 PRLs was constructed. The PRL classifier exhibits a more robust prediction capacity for the survival outcomes in patients with gliomas than the clinical characteristics irrespective of the dataset (training or validation dataset). Moreover, it was found that the tumour landscape between the low- and high-risk groups was significantly different. A high-risk score was linked to a more immunosuppressive tumour microenvironment. According to the outcome prediction and analysis of the chemotherapy, patients with different scores showed different responses to various chemotherapeutic drugs and immunotherapy. Meanwhile, the patient with glioma of WHO grade Ⅳ or aged >50 years in the high risk group had better survival following radiotherapy. Conclusion: We constructed a PRL classifier to roughly predict the outcome of patients with gliomas. Furthermore, the PRL classifier was linked to the immune landscape of glioma and may guide clinical treatments.

7.
J Pharm Biomed Anal ; 176: 112818, 2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31446297

ABSTRACT

An unpredictable ghost peak was intermittently observed during the impurity separation of cefaclor and formulation by high performance liquid chromatography (HPLC) with a content from below the reported threshold to approximately 0.3% in different laboratories. Through a series of investigations, the ghost peak was identified as an unusual on-column degradant of cefaclor formed under elevated column temperature but was not an actual sample impurity. The chemical structure of the degradant was determined by spectroscopic methods, including high resolution mass spectrometry (HRMS) and 1H-NMR. Consequently, the unknown peak was identified as a C-4 oxidative decarboxylation analog of cefaclor. The formation mechanism of the analog is proposed, and it is suggested that elevated column temperature during HPLC analysis has a profound effect on the degradation. Dissolved oxygen in the mobile phase may promote the formation of the ghost peak. The degradation can be suppressed by using a column temperature below 30 °C. Moreover, several other prevention measures are suggested based upon the results of the investigation.


Subject(s)
Anti-Bacterial Agents/analysis , Cefaclor/analysis , Drug Compounding/methods , Anti-Bacterial Agents/chemistry , Cefaclor/chemistry , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Decarboxylation , Drug Compounding/instrumentation , Drug Compounding/standards , Drug Contamination/prevention & control , Mass Spectrometry/methods , Oxidation-Reduction , Proton Magnetic Resonance Spectroscopy , Temperature
8.
Mol Cell Oncol ; 6(2): 1565469, 2019.
Article in English | MEDLINE | ID: mdl-31131298

ABSTRACT

How, if and in which cell types embryonic gene expression programs are elicited to induce tumor formation remains poorly understood. Through genomic analyses of regenerating, p53 deficient muscle stem cells we identified various oncogenomic amplifications, including but not limited to, the zygotic transcription factor Duxbl/DUXB to initiate tumorigenic transformation.

9.
Cell Stem Cell ; 23(6): 794-805.e4, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30449715

ABSTRACT

The identity of tumor-initiating cells in many cancer types is unknown. Tumors often express genes associated with embryonic development, although the contributions of zygotic programs to tumor initiation and formation are poorly understood. Here, we show that regeneration-induced loss of quiescence in p53-deficient muscle stem cells (MuSCs) results in rhabdomyosarcoma formation with 100% penetrance. Genomic analyses of purified tumor cells revealed spontaneous and discrete oncogenic amplifications in MuSCs that drive tumorigenesis, including, but not limited to, the amplification of the cleavage-stage Dux transcription factor (TF) Duxbl. We further found that Dux factors drive an early embryonic gene signature that defines a molecular subtype across a broad range of human cancers. Duxbl initiates tumorigenesis by enforcing a mesenchymal-to-epithelial transition, and targeted inactivation of Duxbl specifically in Duxbl-expressing tumor cells abolishes their expansion. These findings reveal how regeneration and genomic instability can interact to activate zygotic genes that drive tumor initiation and growth.


Subject(s)
Cell Self Renewal , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Neoplasms/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Protein p53/deficiency , Zygote/metabolism , Animals , Cells, Cultured , Genomic Instability , Humans , Mice , Mice, Inbred C57BL , Mice, Nude , Muscle, Skeletal/pathology , Myoblasts/pathology , Neoplasms/metabolism , Neoplasms/pathology , Tumor Suppressor Protein p53/genetics
10.
J Cell Biochem ; 118(12): 4285-4295, 2017 12.
Article in English | MEDLINE | ID: mdl-28422320

ABSTRACT

Myogenesis involves myoblast proliferation and differentiation to myocytes, followed by fusion and hypertrophy to form myotubes during muscle development. Increasing evidence showed that microRNAs (miRNAs) play important roles in the regulation of myogenesis. We have previously revealed that miR-34b is steadily increased during this process. This miRNA regulates differentiation in various cell types, though its function in myogenesis remains to be elucidated. In this study, we show that miR-34b represses muscle cell proliferation and promotes myotube formation. Our quantitative iTRAQ-based proteomic analysis reveals 97 proteins are regulated by miR-34b in mouse myoblast C2C12. We identified that miR-34b targets 14-3-3 protein gamma, adenosylhomocysteinase and nucleolin by binding to their 3'UTR. Further analysis of these proteins expression patterns show that nucleolin is a cognate target of miR-34b during myogenic differentiation. Here, we proved that a moderate reduction of nucleolin in cells enhanced the myotube formation. However, nucleolin is required for myogenesis, as cells with low levels of nucleolin reduced cell proliferation rate and are unable to differentiate. Our data demonstrated that nucleolin regulates myogenesis in a protein-abundance-dependent manner. J. Cell. Biochem. 118: 4285-4295, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
MicroRNAs/metabolism , Muscle Development , Muscle, Skeletal/physiology , Myoblasts/physiology , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , 3' Untranslated Regions , Adenosylhomocysteinase/genetics , Adenosylhomocysteinase/metabolism , Animals , Cell Differentiation , Cell Line , Cell Proliferation , Gene Expression Regulation , Humans , Mice , MicroRNAs/physiology , Models, Animal , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Phosphoproteins/genetics , Phosphoproteins/physiology , Proteomics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/physiology , Nucleolin
11.
Int J Biol Sci ; 13(2): 157-166, 2017.
Article in English | MEDLINE | ID: mdl-28255268

ABSTRACT

Myocytes withdraw from the cell cycle to differentiate during muscle development. Given the capacity of microRNAs (miRNAs) to regulate gene expression during development, we screened for miRNAs that were associated with muscle development. S-Poly(T) Plus analysis of 273 miRNAs in porcine longissimus dorsi muscles revealed 14 miRNAs that were strongly upregulated with age of postnatal muscle development in vivo, including miR-195 and miR-497. These two miRNAs were also strongly upregulated at late differentiation stages of mouse skeletal myoblast C2C12 cells, and demethylation treatment induced significant upregulation of miR-195/497. Manipulation of miR-195/497 expression resulted in dramatic changes in the proliferation and differentiation of C2C12 cells. We identified high-mobility group AT-hook 1 (Hmga1) mRNA as a highly conserved target of miR-195/497 in C2C12 myoblasts. Overexpression of miR-195/497 or Hmga1 silencing in C2C12 cells promoted myogenic differentiation. Moreover, we showed that miR-195/497 repressed Hmga1, which in turn downregulated one of the HMGA1 downstream targets Id3, whose inhibitory effect on myogenic differentiation is well established. Our study revealed a subset of potential development-associated miRNAs and suggests a novel regulatory axis for myogenesis in which miR-195/497 promote myogenic differentiation by repressing the HMGA1-Id3 pathway.


Subject(s)
Cell Differentiation/physiology , Cell Proliferation/physiology , HMGA Proteins/metabolism , MicroRNAs/genetics , Muscle Development/physiology , Myoblasts/cytology , Myoblasts/metabolism , 3' Untranslated Regions/genetics , 3' Untranslated Regions/physiology , Animals , Blotting, Western , Cell Differentiation/genetics , Cell Line , Cell Proliferation/genetics , HMGA Proteins/genetics , HMGA1a Protein/genetics , HMGA1a Protein/metabolism , Humans , Male , Mice , MicroRNAs/metabolism , MicroRNAs/physiology , Muscle Development/genetics , Plasmids/genetics , Reverse Transcriptase Polymerase Chain Reaction , Swine
12.
PLoS One ; 10(12): e0143864, 2015.
Article in English | MEDLINE | ID: mdl-26624995

ABSTRACT

DNA vector-encoded Tough Decoy (TuD) miRNA inhibitor is attracting increased attention due to its high efficiency in miRNA suppression. The current methods used to construct TuD vectors are based on synthesizing long oligonucleotides (~90 mer), which have been costly and problematic because of mutations during synthesis. In this study, we report a PCR-based method for the generation of double Tough Decoy (dTuD) vector in which only two sets of shorter oligonucleotides (< 60 mer) were used. Different approaches were employed to test the inhibitory potency of dTuDs. We demonstrated that dTuD is the most efficient method in miRNA inhibition in vitro and in vivo. Using this method, a mini dTuD library against 88 human miRNAs was constructed and used for a high-throughput screening (HTS) of AP-1 pathway-related miRNAs. Seven miRNAs (miR-18b-5p, -101-3p, -148b-3p, -130b-3p, -186-3p, -187-3p and -1324) were identified as candidates involved in AP-1 pathway regulation. This novel method allows for an accurate and cost-effective generation of dTuD miRNA inhibitor, providing a powerful tool for efficient miRNA suppression in vitro and in vivo.


Subject(s)
Gene Transfer Techniques , Genetic Vectors , Lentivirus/genetics , MicroRNAs/antagonists & inhibitors , Oligodeoxyribonucleotides/pharmacology , Polymerase Chain Reaction/methods , Humans , MicroRNAs/genetics , Signal Transduction , Transcription Factor AP-1/metabolism
13.
Sci Rep ; 5: 12098, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26166214

ABSTRACT

There is growing evidence that microRNAs play important roles in cellular responses to hypoxia and in pulmonary hypertensive vascular remodeling, but the exact molecular mechanisms involved are not fully elucidated. In this study, we identified miR-322 as one of the microRNAs induced in lungs of chronically hypoxic mice and rats. The expression of miR-322 was also upregulated in primary cultured rat pulmonary arterial smooth muscle cells (PASMC) in response to hypoxia. We demonstrated that HIF-1α, but not HIF-2α, transcriptionally upregulates the expression of miR-322 in hypoxia. Furthermore, miR-322 facilitated the accumulation of HIF-1α in the nucleus and promoted hypoxia-induced cell proliferation and migration. Direct targeting BMPR1a and smad5 by miR-322 was demonstrated in PASMCs suggesting that downregulation of BMP-Smad signaling pathway may be mediating the hypoxia-induced PASMC proliferation and migration. Our study implicates miR-322 in the hypoxic proliferative response of PASMCs suggesting that it may be playing a role in pulmonary vascular remodeling associated with pulmonary hypertension.


Subject(s)
Cell Hypoxia/physiology , Cell Movement/physiology , Cell Proliferation/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , MicroRNAs/metabolism , Myocytes, Smooth Muscle/pathology , Pulmonary Artery/pathology , Animals , Cells, Cultured , Down-Regulation/physiology , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology , Up-Regulation/physiology
14.
J Pharm Biomed Anal ; 107: 131-40, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25590942

ABSTRACT

A quality control strategy using high-performance liquid chromatography-diode array detector-electrospray ionization-tandem mass spectrometry (HPLC-DAD-ESI-MS/MS) coupled with chemometrics analysis was proposed for Aloe barbadensis Miller. Firstly, the extraction conditions including methanol concentration, extraction time and solvent-to-material ratio were optimized by multi-responses optimization based on response surface methodology (RSM). The optimum conditions were achieved by Derringer's desirability function and experimental validation implied that the established model exhibited favorable prediction ability. Then, HPLC fingerprint consisting of 27 common peaks was developed among 15 batches of A. barbadensis samples. 25 common peaks were identified using HPLC-DAD-ESI-MS/MS method by their spectral characteristics or comparison with the authentic standards. Chemometrics techniques including similarity analysis (SA), principal components analysis (PCA) and hierarchical clustering analysis (HCA) were implemented to classify A. barbadensis samples. The results demonstrated that all A. barbadensis samples shared similar chromatographic patterns as well as differences. These achievements provided an effective, reliable and comprehensive quality control method for A. barbadensis.


Subject(s)
Aloe/chemistry , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods , Principal Component Analysis , Quality Control , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
15.
Fitoterapia ; 100: 68-74, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25449426

ABSTRACT

The ethanolic extract of Aloe barbadensis Miller leaf skin showed inhibitory activity against phosphodiesterase-4D (PDE4D), which is a therapeutic target of inflammatory disease. Subsequent bioassay-guided fractionation led to the isolation of two new anthrones, 6'-O-acetyl-aloin B (9) and 6'-O-acetyl-aloin A (11), one new chromone, aloeresin K (8), together with thirteen known compounds. Their chemical structures were elucidated by spectroscopic methods including UV, IR, 1D and 2D NMR, and HRMS. All of the isolates were screened for their inhibitory activity against PDE4D using tritium-labeled adenosine 3',5'-cyclic monophosphate ((3)H-cAMP) as substrate. Compounds 13 and 14 were identified as PDE4D inhibitors, with their IC50 values of 9.25 and 4.42 µM, respectively. These achievements can provide evidences for the use of A. barbadensis leaf skin as functional feed additives for anti-inflammatory purpose.


Subject(s)
Aloe/chemistry , Phosphodiesterase 4 Inhibitors/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Animals , Anthracenes/chemistry , Anthracenes/isolation & purification , Cell Line , Chromones/chemistry , Chromones/isolation & purification , Inhibitory Concentration 50 , Mice , Molecular Structure , Phosphodiesterase 4 Inhibitors/isolation & purification
16.
J Anim Sci Biotechnol ; 5(1): 45, 2014.
Article in English | MEDLINE | ID: mdl-25324970

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV), and particularly its highly pathogenic genotype (HP-PRRSV), have caused massive economic losses to the global swine industry. RESULTS: To rapidly identify HP-PRRSV, we developed a direct real-time reverse transcription polymerase chain reaction method (dRT-PCR) that could detect the virus from serum specimen without the need of RNA purification. Our dRT-PCR assay can be completed in 1.5 h from when a sample is received to obtaining a result. Additionally, the sensitivity of dRT-PCR matched that of conventional reverse transcription PCR (cRT-PCR) that used purified RNA. The lowest detection limit of HP-PRRSV was 6.3 TCID50 using dRT-PCR. We applied dRT-PCR assay to 144 field samples and the results showed strong consistency with those obtained by cRT-PCR. Moreover, the dRT-PCR method was able to tolerate 5-20% (v/v) serum. CONCLUSIONS: Our dRT-PCR assay allows for easier, faster, more cost-effective and higher throughput detection of HP-PRRSV compared with cRT-PCR methods. To the best of our knowledge, this is the first report to describe a real-time RT-PCR assay capable of detecting PRRSV in crude serum samples without the requirement for purifying RNA. We believe our approach has a great potential for application to other RNA viruses.

17.
Phytochem Anal ; 25(3): 282-8, 2014.
Article in English | MEDLINE | ID: mdl-24497404

ABSTRACT

INTRODUCTION: Chromones and pyrones are the major secondary metabolites of Aloe barbadensis Miller. As they are minor components of the plant, an efficient purification procedure for them is of great importance for promoting their pharmacological studies. OBJECTIVE: To develop efficient methods for one-step separation and purification of two chromones (5-((S)-2'-oxo-4'-hydroxypentyl)-2-hydroxymethylchromone (1) and 5-((4E)-2'-oxo-pentenyl)-2-hydroxymethylchromone (3)) and one pyrone (aloenin aglycone (2)) from A. barbadensis via reversed-phase flash chromatography (RP-FC) and high-speed counter current chromatography (HSCCC). METHODS: The RP-FC separation was performed using methanol:water (26:74, v/v) as the mobile phase at a flow rate of 20 mL/min. A solvent system composed of dichloromethane:methanol:water (3:1.5:1, v/v/v) was used for the HSCCC separation, at a flow rate of 2.0 mL/min. RESULTS: A one-step RP-FC operation within 110 min was successfully used for the purification of compounds 1 (27.9 mg, 96.5%), 2 (32.4 mg, 98.2%) and 3 (4.1 mg, 99.0%) from 129 mg of crude sample, and a one-step HSCCC separation within 95 min was successfully implemented for the purification of compounds 1 (31.1 mg, 97.6%), 2 (35.8 mg, 96.7%) and 3 (2.7 mg, 98.1%) from 134 mg of crude sample. CONCLUSION: The developed procedures were efficient, with low cost and high yield, which would afford sufficient amounts of high-purity compounds for chromatographic purposes and pharmacological activity screening.


Subject(s)
Aloe/chemistry , Chromatography, Reverse-Phase/methods , Chromones/isolation & purification , Countercurrent Distribution/methods , Plant Extracts/chemistry , Pyrones/isolation & purification , Chromatography, Reverse-Phase/economics , Chromones/chemistry , Countercurrent Distribution/economics , Methylene Chloride , Plant Extracts/isolation & purification , Pyrones/chemistry , Time Factors
18.
PLoS One ; 8(10): e76288, 2013.
Article in English | MEDLINE | ID: mdl-24098464

ABSTRACT

microRNAs (miRNAs) are non-coding small RNAs (sRNAs) capable of negatively regulating gene expression. Recently, microRNA-like small RNAs (milRNAs) were discovered in several filamentous fungi but not yet in Trichoderma reesei, an industrial filamentous fungus that can secrete abundant hydrolases. To explore the presence of milRNA in T. reesei and evaluate their expression under induction of cellulose, two T. reesei sRNA libraries of cellulose induction (IN) and non-induction (CON) were generated and sequenced using Solexa sequencing technology. A total of 726 and 631 sRNAs were obtained from the IN and CON samples, respectively. Global expression analysis showed an extensively differential expression of sRNAs in T. reesei under the two conditions. Thirteen predicted milRNAs were identified in T. reesei based on the short hairpin structure analysis. The milRNA profiles obtained in deep sequencing were further validated by RT-qPCR assay. Computational analysis predicted a number of potential targets relating to many processes including regulation of enzyme expression. The presence and differential expression of T. reesei milRNAs imply that milRNA might play a role in T. reesei growth and cellulase induction. This work lays foundation for further functional study of fungal milRNAs and their industrial application.


Subject(s)
High-Throughput Nucleotide Sequencing , MicroRNAs/genetics , RNA, Fungal/genetics , Trichoderma/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal , MicroRNAs/chemistry , Nucleic Acid Conformation , RNA, Fungal/chemistry , Trichoderma/growth & development
19.
Fitoterapia ; 91: 159-165, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24028970

ABSTRACT

Aloe barbadensis Mill has been used as food and medicine for a long time. In order to investigate the chemical constituents of A. barbadensis and their inhibitory activities towards phosphodiesterase-4D (PDE4D), 70% methanol extract of the dried A. barbadensis powder was employed. Phytochemical investigation has led to the isolation of three new chromones, 5-(hydroxymethyl)-7-methoxy-2-methylchromone (4), 5-((4E)-2'-oxo-pentenyl)-2-hydroxymethylchromone (6), and 7-hydroxy-5-(hydroxymethyl)-2-methylchromone (7), together with eighteen known compounds. Their chemical structures were determined based on spectroscopic methods including UV, IR, 1D and 2D NMR, and HRMS spectrometry. In addition, their inhibition against PDE4D was evaluated using tritium-labeled adenosine 3',5'-cyclic monophosphate ((3)H-cAMP) as the substrate. Inhibition was calculated by the variation of radioactivity after the reaction, and compounds 1-4, 10, and 21 exhibited certain inhibitory activities towards PDE4D, which can provide an explanation why A. barbadensis can serve as anti-inflammatory agents.


Subject(s)
Aloe/chemistry , Chromones/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Phosphodiesterase Inhibitors/pharmacology , Plant Extracts/pharmacology , Chromones/chemistry , Chromones/isolation & purification , Molecular Structure , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/isolation & purification , Plant Extracts/chemistry
20.
Yao Xue Xue Bao ; 48(5): 723-7, 2013 May.
Article in Chinese | MEDLINE | ID: mdl-23888696

ABSTRACT

To investigate the chemical constituents of A. barbadensis, aqueous extract of the plant was subjected to preparative medium pressure liquid chromatography (MPLC). The chemical structures were mainly determined by spectroscopic evidences (UV, IR, HR-MS, 1H NMR, 13C NMR, HSQC, 1H-1H COSY and HMBC) and chemical methods. A new O, O, O-triglucosylated naphthalene derivative, together with two known 6-phenyl-2-pyrone derivatives and four 5-methylchromones, were isolated and identified as 1-((3-((4- O-beta-D-glucopyranosyl)-beta-D-xylopyranosyloxymethyl)-1-hydroxy-8-alpha-L-rhamnopyranosyloxy)naphthalene-2-y])-ethanone (1), 10-O-beta-D-glucopyranosyl aloenin (2), aloenin B (3), aloesin (4), 8-C-glucosyl-(R)-aloesol (5), 8-C-glucosyl-7-O-methyl-(S)-aloesol (6), and isoaloeresin D (7). Compound 1 is a novel naphthalene derivative and named as aloveroside B, compounds 2-3 are isolated from this Aloe species for the first time.


Subject(s)
Aloe/chemistry , Glycosides/isolation & purification , Naphthalenes/isolation & purification , Plants, Medicinal/chemistry , Chromones/chemistry , Chromones/isolation & purification , Glucosides/chemistry , Glucosides/isolation & purification , Glycosides/chemistry , Molecular Structure , Naphthalenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...