Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr Biochem ; 131: 109674, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825026

ABSTRACT

Arginine (ARG)/Citrulline (CIT) deficiency is associated with increased sepsis severity after infection. Supplementation of CIT to susceptible patients with ARG/CIT deficiency such as preterm newborns with suspected infection might prevent sepsis, via maintaining immune and vascular function. Caesarean-delivered, parenterally nourished preterm pigs were treated with CIT (1g/kg bodyweight) via oral or continuous intravenous supplementation, then inoculated with live Staphylococcus epidermidis and clinically monitored for 14 h. Blood, liver, and spleen samples were collected for analysis. In vitro cord blood stimulation was performed to explore how CIT and ARG affect premature blood cell responses. After infection, oral CIT supplementation led to higher mortality, increased blood bacterial load, and systemic and hepatic inflammation. Intravenous CIT administration showed increased inflammation and bacterial burdens without significantly affecting mortality. Liver transcriptomics and data from in vitro blood stimulation indicated that CIT induces systemic immunosuppression in preterm newborns, which may impair resistance response to bacteria at the early stage of infection, subsequently causing later uncontrollable inflammation and tissue damage. The early stage of CIT supplementation exacerbates sepsis severity in infected preterm pigs, likely via inducing systemic immunosuppression.

2.
Pediatr Res ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762663

ABSTRACT

BACKGROUND: Preterm birth disrupts fetal kidney development, potentially leading to postnatal acute kidney injury. Preterm infants are deficient in insulin-like growth factor 1 (IGF-1), a growth factor that stimulates organ development. By utilizing a preterm pig model, this study investigated whether IGF-1 supplementation enhances preterm kidney maturation. METHODS: Cesarean-delivered preterm pigs were treated systemically IGF-1 or vehicle control for 5, 9 or 19 days after birth. Blood, urine, and kidney tissue were collected for biochemical, histological and gene expression analyses. Age-matched term-born pigs were sacrificed at similar postnatal ages and served as the reference group. RESULTS: Compared with term pigs, preterm pigs exhibited impaired kidney maturation, as indicated by analyses of renal morphology, histopathology, and inflammatory and injury markers. Supplementation with IGF-1 reduced signs of kidney immaturity, particularly in the first week of life, as indicated by improved morphology, upregulated expression of key developmental genes, reduced severity and incidence of microscopic lesions, and decreased levels of inflammatory and injury markers. No association was seen between the symptoms of necrotizing enterocolitis and kidney defects. CONCLUSION: Preterm birth in pigs impairs kidney maturation and exogenous IGF-1 treatment partially reverses this impairment. Early IGF-1 supplementation could support the development of preterm kidneys. IMPACT: Preterm birth may disrupt kidney development in newborns, potentially leading to morphological changes, injury, and inflammation. Preterm pigs have previously been used as models for preterm infants, but not for kidney development. IGF-1 supplementation promotes kidney maturation and alleviates renal impairments in the first week of life in preterm pigs. IGF-1 may hold potential as a supportive therapy for preterm infants sensitive to acute kidney injury.

3.
Mol Nutr Food Res ; 67(24): e2300318, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37888862

ABSTRACT

SCOPE: Ready-to-feed liquid infant formulas (IFs) are increasingly being used for newborn preterm infants when human milk is unavailable. However, sterilization of liquid IFs by ultra-high temperature (UHT) introduces Maillard reaction products (MRPs) that may negatively affect systemic immune and kidney development. METHODS AND RESULTS: UHT-treated IF without and with prolonged storage (SUHT) are tested against pasteurized IF (PAST) in newborn preterm pigs as a model for preterm infants. After 5 days, blood leukocytes, markers of systemic immunity and inflammation, kidney structure and function are evaluated. No consistent differences between UHT and PAST pigs are observed. However, SUHT increases plasma TNFα and IL-6 and reduces neutrophils and in vitro response to LPS. In SUHT pigs, the immature kidneys show minor upregulation of gene expressions related to inflammation (RAGE, MPO, MMP9) and oxidative stress (CAT, GLO1), together with glomerular mesangial expansion and cell injury. The increased inflammatory status in SUHT pigs appears unrelated to systemic levels of MRPs. CONCLUSION: SUHT feeding may impair systemic immunity and affect kidney development in preterm newborns. The systemic effects may be induced by local gut inflammatory effects of MRPs. Optimal processing and length of storage are critical for UHT-treated liquid IFs for preterm infants.


Subject(s)
Infant Formula , Infant, Premature , Infant , Humans , Infant, Newborn , Animals , Swine , Animals, Newborn , Temperature , Inflammation , Kidney
4.
Fish Shellfish Immunol ; 103: 256-265, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32439508

ABSTRACT

The present study aimed to explore the effects of phytic acid (PA) on the antimicrobial activity and inflammatory response in three immune organs (head kidney, spleen and skin) of on-growing grass carp (Ctenopharyngodon idella). To achieve this goal, we first conducted a 60-day growth trial by feeding fish with graded levels of PA (0, 0.8, 1.6, 2.4, 3.2 and 4.0%). Then, the fish were challenged with Aeromonas hydrophila for 6 days. Compared with the control group, the following results were obtained regarding supplementation with certain levels of PA in the diet. (1) There was an increase in skin haemorrhage and lesion morbidity in fish. (2) There was a decrease in activities or contents of immune factors, including lysozyme (LZ), complement 3 (C3), C4 and immunoglobulin M (IgM), and there was downregulation of gene expression levels of hepcidin, liver-expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, and ß-defensin-1 in immune organs. (3) There was upregulation in the gene expression of the following pro-inflammatory cytokines: tumour necrosis factor α (TNF-α), interleukin 1ß (IL-1ß) (except in the spleen), interferon γ2 (IFN-γ2), IL-6 (except in the spleen), IL-8, IL-12p40, IL-15 and IL-17D. These changes were partly related to the nuclear factor kappa B (NF-κB) signalling pathway, but downregulation of mRNA levels of anti-inflammatory cytokines (transforming growth factor ß1 (TGF-ß1), TGF-ß2, IL-413/A, IL-413/B, IL-10 (except in the skin) and IL-11) occurred in a manner partially related to the target of rapamycin (TOR) signalling pathway. Finally, based on the broken-line analysis of skin haemorrhage and lesion morbidity and IgM content in the head kidney, the maximum tolerance levels of PA for on-growing grass carp (120.56-452.00 g) were estimated to be 1.79 and 1.31% of the diet, respectively.


Subject(s)
Adaptive Immunity/drug effects , Carps/immunology , Fish Diseases/immunology , Immunity, Innate/drug effects , Phytic Acid/metabolism , Aeromonas hydrophila/physiology , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Head Kidney/immunology , Phytic Acid/administration & dosage , Random Allocation , Skin/immunology , Spleen/immunology
5.
Fish Shellfish Immunol ; 92: 536-551, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31247320

ABSTRACT

Phytic acid (PA) is one of the most common anti-nutritional factors in plant-derived protein feeds, and it poses considerable threats to aquaculture production. However, little is known about the effects of PA on fish intestinal health. This study aimed to investigate the impacts of PA on intestinal immune function in on-growing grass carp. To achieve this goal, a growth trial was conducted for 60 days by feeding 540 fish (120.56 ±â€¯0.51 g) with six semi-purified diets containing graded levels of PA (0, 0.8, 1.6, 2.4, 3.2 and 4.0%). Then fish were challenged with Aeromonas hydrophila for 6 days. The results indicated that, compared with the control group (0% PA), PA did the following: (1) suppressed fish growth performance (percentage weight gain and feed efficiency) and reduced their ability to resist enteritis; (2) decreased fish intestinal antimicrobial ability by reducing intestinal lysozyme (LZ) activities, the contents of complement 3 (C3), C4 and immunoglobulin M (IgM), and downregulating the mRNA levels of hepcidin, liver-expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, and ß-defensin-1; and (3) aggravated fish intestinal inflammation responses by upregulating the mRNA levels of pro-inflammatory cytokines including tumour necrosis factor α (TNF-α), interleukin 1ß (IL-1ß) (except in the DI), interferon γ2 (IFN-γ2), IL-8, IL-12p40, IL-15 (except in the DI) and IL-17D, which is partly related to the nuclear factor kappa B (NF-κB) signalling pathway, whereas downregulating the mRNA levels of anti-inflammatory cytokines including transforming growth factor ß1 (TGF-ß1), IL-4/13A, IL-4/13B, IL-10 and IL-11, which is partially associated with the target of rapamycin (TOR) signalling pathway. The possible reasons for some distinctive gene expression patterns in fish three intestinal segments were discussed. Finally, based on the percent weight gain, enteritis morbidity, IgM content and LZ activity in the PI, the maximum tolerance levels of PA for on-growing grass carp were estimated to be 2.17, 1.68, 1.47 and 1.18% of the diet, respectively.


Subject(s)
Adaptive Immunity/genetics , Carps/growth & development , Carps/immunology , Fish Diseases/immunology , Immunity, Innate/genetics , Intestines/immunology , Phytic Acid/metabolism , Aeromonas hydrophila/physiology , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Gram-Negative Bacterial Infections/immunology , Phytic Acid/administration & dosage , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...