Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36679241

ABSTRACT

It is of great significance to develop green, sustainable additives to improve the thermal stability and flame retardancy of biopolymers. In this work, a synergistic modification of P/N elements to bamboo biochar (mBC) was successfully achieved by grafting a reaction of phytic acid and urea with preoxidized bamboo biochar. Fourier transform infrared spectroscopy, X-ray diffraction, nuclear magnetic resonance and scanning electron microscope determinations of the mBC demonstrated a successive grafting of phytic acid and urea to the originally porous surface. The ground mBC was blended with polylactic acid (PLA) to prepare mBC/PLA composites by extrusion and hot pressing. Mechanical strength studies showed a compromise in rigidity, which might originate from the mBC overdose and its limited miscibility with the resin. The thermogravimetric results supported the fact that the enhancement of thermal stability and flame retardancy of the composites with the mBC dosage, which showed that the mBC dosage in the PLA composites was not only lower than that of the conventional flame retardants, but also outperformed the counterparts using BC modified by inorganic phosphoric acid and urea. The mBC was prone to accelerate the earlier decomposition of the composites (30 °C lower in decomposition) and generate a continuous, dense residual carbon layer, which provides an effective shield resisting the mass and heat transfer between the combustion area and the underlying composite matrix. Only 10 wt% of mBC dosage could achieve a V-0 rating (UL94) for the composite, with a higher limiting oxygen index up to 28.3% compared to 20.7% for that of the virgin PLA; the cone colorimetric results also suggested that the flame retardancy had been greatly improved for all composites. In this work, biobased P-/N-containing bamboo biochar would be expected as a nontoxic biochar-based flame retardant that serves as green filler in polymer composites.

2.
Materials (Basel) ; 15(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36234140

ABSTRACT

A P-/N-containing bamboo-activated carbon (BACm) was successfully synthesized by steam activation of bamboo charcoal and chemical grafting to as-prepared activated carbon using the reaction of phosphoric acid and urea. Characterizations of BACm presented a synergistic grafting of P and N elements to the BAC surface. The BACm was further loaded in a polylactic acid (PLA) matrix to prepare BACm/PLA composites. Mechanical strength study showed tensile strength dropped from 75.19 MPa to 61.30 MPa, and tensile modulus from 602.49 MPa to 375.56 MPa, suggesting a rigidity reduction and deformation resistance enhancement owing to the roughened surface of BACm that interlocked with the polymer. The thermogravimetric analysis showed that the carbon residue rate of BACm dramatically fell to 49.25 wt.% in contrast to 88.28% for the control BAC, and cone calorimeter measurements confirmed the enhancement of flame retardancy of the composites with BACm loading, and the carbon residue rate increased progressively with BACm loading in the composites, notably up to 8.60 wt.% for the BAC/PLA9 composite, which outweighed the theoretical residue rate by more than 50%. The elemental analysis also confirmed rich P/N levels of the dense carbon residue layer that could perform synergistically and effectively in fire suppression. The BACm tended to stimulate the earlier decomposition of the composites and formed a continuous residual carbon layer which functioned as an effective barrier hindering the mass and heat transfer between the combustion zone and the underlying matrix. Moreover, 9 wt.% of BACm loading could attain a V-0 rating (UL94) for the composite with an improved limiting oxygen index up to 31.7%. The biomass-based modified activated carbon in this work could be considered as an alternative flame retardant in polymer applications.

3.
Materials (Basel) ; 15(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35160708

ABSTRACT

In this work, nitrogen-doped bamboo-based activated carbon (NBAC) was in situ synthesized from simply blending bamboo charcoal (BC) with sodamide (SA, NaNH2) powders and heating with a protection of nitrogen flow at a medium temperature. The elemental analysis and X-ray photoelectron spectra of as-synthesized NBAC showed quite a high nitrogen level of the simultaneously activated and doped samples; an abundant pore structure had also been determined from the NBACs which has a narrow size distribution of micropores (<2 nm) and favorable specific surface area that presented superb adsorption performance. The fcarbon dioxide (CO2) adsorption of the NBACs was measured at 0 °C and 25 °C at a pressure of 1 bar, whose capture capacities reached 3.68-4.95 mmol/g and 2.49-3.52 mmol/g, respectively, and the maximum adsorption could be observed for NBACs fabricated with an SA/BC ratio of 3:1 and activated at 500 °C. Further, adsorption selectivity of CO2 over N2 was deduced with the ideal adsorbed solution theory ((IAST), the selectivity was finally calculated which ranged from 15 to 17 for the NBACs fabricated at 500 °C). The initial isosteric heat of adsorption (Qst) of NBACs was also determined at 30-40 kJ/mol, which suggested that CO2 adsorption was a physical process. The results of ten-cycle adsorption-desorption experimentally confirmed the regenerated NBACs of a steady CO2 adsorption performance, that is, the as-synthesized versatile NBAC with superb reproducibility makes it a perspective candidate in CO2 capture and separation application.

SELECTION OF CITATIONS
SEARCH DETAIL
...