Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Anal Chem ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718350

ABSTRACT

Solid-contact ion-selective electrodes (SC-ISEs) with ionophore-based polymer-sensitive membranes have been the major devices in wearable sweat sensors toward electrolyte analysis. However, the toxicity of ionophores in ion-selective membranes (ISMs), for example, valinomycin (K+ ion carrier), is a significant challenge, since the ISM directly contacts the skin during the tests. Herein, we report coating a hydrogel of graphene oxide-poly(vinyl alcohol) (GO-PVA) on the ISM to fabricate hydrogel-based SC-ISEs. The hydrogen bond interaction between GO sheets and PVA chains could enhance the mechanical strength through the formation of a cross-linking network. Comprehensive electrochemical tests have demonstrated that hydrogel-coated K+-SC-ISE maintains Nernstian response sensitivity, high selectivity, and anti-interference ability compared with uncoated K+-SC-ISE. A flexible hydrogel-based K+ sensing device was further fabricated with the integration of a solid-contact reference electrode, which has realized the monitoring of sweat K+ in real time. This work highlights the possibility of hydrogel coating for fabricating biocompatible wearable potentiometric sweat electrolyte sensors.

2.
J Magn Reson Imaging ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686707

ABSTRACT

BACKGROUND: Artificial intelligence shows promise in assessing knee osteoarthritis (OA) progression on MR images, but faces challenges in accuracy and interpretability. PURPOSE: To introduce a temporal-regional graph convolutional network (TRGCN) on MR images to study the association between knee OA progression status and network outcome. STUDY TYPE: Retrospective. POPULATION: 194 OA progressors (mean age, 62 ± 9 years) and 406 controls (mean age, 61 ± 9 years) from the OA Initiative were randomly divided into training (80%) and testing (20%) cohorts. FIELD STRENGTH/SEQUENCE: Sagittal 2D IW-TSE-FS (IW) and 3D-DESS-WE (DESS) at 3T. ASSESSMENT: Anatomical subregions of cartilage, subchondral bone, meniscus, and the infrapatellar fat pad at baseline, 12-month, and 24-month were automatically segmented and served as inputs to form compartment-based graphs for a TRGCN model, which containing both regional and temporal information. The performance of models based on (i) clinical variables alone, (ii) radiologist score alone, (iii) combined features (containing i and ii), (iv) composite TRGCN (combining TRGCN, i and ii), (v) radiomics features, (vi) convolutional neural network based on Densenet-169 were compared. STATISTICAL TESTS: DeLong test was performed to compare the areas under the ROC curve (AUC) of all models. Additionally, interpretability analysis was done to evaluate the contributions of individual regions. A P value <0.05 was considered significant. RESULTS: The composite TRGCN outperformed all other models with AUCs of 0.841 (DESS) and 0.856 (IW) in the testing cohort (all P < 0.05). Interpretability analysis highlighted cartilage's importance over other structures (42%-45%), tibiofemoral joint's (TFJ) dominance over patellofemoral joint (PFJ) (58%-67% vs. 12%-37%), and importance scores changes in compartments over time (TFJ vs. PFJ: baseline: 44% vs. 43%, 12-month: 52% vs. 39%, 24-month: 31% vs. 48%). DATA CONCLUSION: The composite TRGCN, capturing temporal and regional information, demonstrated superior discriminative ability compared with other methods, providing interpretable insights for identifying knee OA progression. TECHNICAL EFFICACY: Stage 2.

3.
Talanta ; 274: 125993, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38579422

ABSTRACT

Current potentiometric Cu2+ sensors mostly rely on polymer-membrane-based solid-contact ion-selective electrodes (SC-ISEs) that constitute ion-selective membranes (ISM) and solid contact (SC) for respective ion recognition and ion-to-electron transduction. Herein, we report an ISM-free Cu2+-SC-ISE based on Cu-Mn oxide (Cu1.4Mn1.6O4) as a bifunctional SC layer. The starting point is simplifying complex multi-interfaces for Cu2+-SC-ISEs. Specifically, ion recognition and signal transduction have been achieved synchronously by an ion-coupled-electron transfer of crystal ion transport and electron transfer of Mn4+/3+ in Cu1.4Mn1.6O4. The proposed Cu1.4Mn1.6O4 electrode discloses comparable sensitivity, response time, high selectivity and stability compared with present ISM-based potentiometric Cu2+ sensors. In addition, the Cu1.4Mn1.6O4 electrode also exhibits near Nernstian responses toward Cu2+ in natural water background. This work emphasizes an ISM-free concept and presents a scheme for the development of potentiometric Cu2+ sensors.

4.
Anal Chim Acta ; 1287: 342046, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38182362

ABSTRACT

Solid-contact ion-selective electrodes (SC-ISEs) feature miniaturization and integration that have gained extensive attention in non-invasive wearable sweat electrolyte sensors. The state-of-the-art wearable SC-ISEs mainly use polyethylene terephthalate, gold and carbon nanotube fibers as flexible substrates but suffer from uncomfortableness, high cost and biotoxicity. Herein, we report carbon fiber-based SC-ISEs to construct a four-channel wearable potentiometric sensor for sweat electrolytes monitoring (Na+/K+/pH/Cl-). The carbon fibers were extracted from commercial cloth, of which the starting point is addressing the cost and reproducibility issues for flexible SC-ISEs. The bare carbon fiber electrodes exhibited reversible voltammetric and stable impedance performances. Further fabricated SC-ISEs based on corresponding ion-selective membranes disclosed Nernstian sensitivity and anti-interface ability toward both ions and organic species in sweat. Significantly, these carbon fiber-based SC-ISEs revealed high reproducibility of standard potentials between normal and bending states. Finally, a textile-based sensor was integrated with a solid-contact reference electrode, which realized on-body sweat electrolytes analysis. The results displayed high accuracy compared with ex-situ tests by ion chromatography. This work highlights carbon fiber-based multichannel wearable potentiometric ion sensors with low cost, biocompatibility and reproducibility.

5.
Quant Imaging Med Surg ; 13(8): 4852-4866, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37581080

ABSTRACT

Background: No investigations have thoroughly explored the feasibility of combining magnetic resonance (MR) images and deep-learning methods for predicting the progression of knee osteoarthritis (KOA). We thus aimed to develop a potential deep-learning model for predicting OA progression based on MR images for the clinical setting. Methods: A longitudinal case-control study was performed using data from the Foundation for the National Institutes of Health (FNIH), composed of progressive cases [182 osteoarthritis (OA) knees with both radiographic and pain progression for 24-48 months] and matched controls (182 OA knees not meeting the case definition). DeepKOA was developed through 3-dimensional (3D) DenseNet169 to predict KOA progression over 24-48 months based on sagittal intermediate-weighted turbo-spin echo sequences with fat-suppression (SAG-IW-TSE-FS), sagittal 3D dual-echo steady-state water excitation (SAG-3D-DESS-WE) and its axial and coronal multiplanar reformation, and their combined MR images with patient-level labels at baseline, 12, and 24 months to eventually determine the probability of progression. The classification performance of the DeepKOA was evaluated using 5-fold cross-validation. An X-ray-based model and traditional models that used clinical variables via multilayer perceptron were built. Combined models were also constructed, which integrated clinical variables with DeepKOA. The area under the curve (AUC) was used as the evaluation metric. Results: The performance of SAG-IW-TSE-FS in predicting OA progression was similar or higher to that of other single and combined sequences. The DeepKOA based on SAG-IW-TSE-FS achieved an AUC of 0.664 (95% CI: 0.585-0.743) at baseline, 0.739 (95% CI: 0.703-0.775) at 12 months, and 0.775 (95% CI: 0.686-0.865) at 24 months. The X-ray-based model achieved an AUC ranging from 0.573 to 0.613 at 3 time points. However, adding clinical variables to DeepKOA did not improve performance (P>0.05). Initial visualizations from gradient-weighted class activation mapping (Grad-CAM) indicated that the frequency with which the patellofemoral joint was highlighted increased as time progressed, which contrasted the trend observed in the tibiofemoral joint. The meniscus, the infrapatellar fat pad, and muscles posterior to the knee were highlighted to varying degrees. Conclusions: This study initially demonstrated the feasibility of DeepKOA in the prediction of KOA progression and identified the potential responsible structures which may enlighten the future development of more clinically practical methods.

6.
Ann Intern Med ; 176(5): 658-666, 2023 05.
Article in English | MEDLINE | ID: mdl-37068272

ABSTRACT

BACKGROUND: Development of safe and effective SARS-CoV-2 therapeutics is a high priority. Amubarvimab and romlusevimab are noncompeting anti-SARS-CoV-2 monoclonal antibodies with an extended half-life. OBJECTIVE: To assess the safety and efficacy of amubarvimab plus romlusevimab. DESIGN: Randomized, placebo-controlled, phase 2 and 3 platform trial. (ClinicalTrials.gov: NCT04518410). SETTING: Nonhospitalized patients with COVID-19 in the United States, Brazil, South Africa, Mexico, Argentina, and the Philippines. PATIENTS: Adults within 10 days onset of symptomatic SARS-CoV-2 infection who are at high risk for clinical progression. INTERVENTION: Combination of monoclonal antibodies amubarvimab plus romlusevimab or placebo. MEASUREMENTS: Nasopharyngeal and anterior nasal swabs for SARS-CoV-2, COVID-19 symptoms, safety, and progression to hospitalization or death. RESULTS: Eight-hundred and seven participants who initiated the study intervention were included in the phase 3 analysis. Median age was 49 years (quartiles, 39 to 58); 51% were female, 18% were Black, and 50% were Hispanic or Latino. Median time from symptom onset at study entry was 6 days (quartiles, 4 to 7). Hospitalizations and/or death occurred in 9 (2.3%) participants in the amubarvimab plus romlusevimab group compared with 44 (10.7%) in the placebo group, with an estimated 79% reduction in events (P < 0.001). This reduction was similar between participants with 5 or less and more than 5 days of symptoms at study entry. Grade 3 or higher treatment-emergent adverse events through day 28 were seen less frequently among participants randomly assigned to amubarvimab plus romlusevimab (7.3%) than placebo (16.1%) (P < 0.001), with no severe infusion reactions or drug-related serious adverse events. LIMITATION: The study population was mostly unvaccinated against COVID-19 and enrolled before the spread of Omicron variants and subvariants. CONCLUSION: Amubarvimab plus romlusevimab was safe and significantly reduced the risk for hospitalization and/or death among nonhospitalized adults with mild to moderate SARS-CoV-2 infection at high risk for progression to severe disease. PRIMARY FUNDING SOURCE: National Institute of Allergy and Infectious Diseases of the National Institutes of Health.


Subject(s)
COVID-19 , Adult , Humans , Female , Middle Aged , Male , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Viral , Double-Blind Method
7.
Membranes (Basel) ; 13(4)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37103803

ABSTRACT

The level of hydrogen ions in sweat is one of the most important physiological indexes for the health state of the human body. As a type of two-dimensional (2D) material, MXene has the advantages of superior electrical conductivity, a large surface area, and rich functional groups on the surface. Herein, we report a type of Ti3C2Tx-based potentiometric pH sensor for wearable sweat pH analysis. The Ti3C2Tx was prepared by two etching methods, including a mild LiF/HCl mixture and HF solution, which was directly used as the pH-sensitive materials. Both etched Ti3C2Tx showed a typical lamellar structure and exhibited enhanced potentiometric pH responses compared with a pristine precursor of Ti3AlC2. The HF-Ti3C2Tx disclosed the sensitivities of -43.51 ± 0.53 mV pH-1 (pH 1-11) and -42.73 ± 0.61 mV pH-1 (pH 11-1). A series of electrochemical tests demonstrated that HF-Ti3C2Tx exhibited better analytical performances, including sensitivity, selectivity, and reversibility, owing to deep etching. The HF-Ti3C2Tx was thus further fabricated as a flexible potentiometric pH sensor by virtue of its 2D characteristic. Upon integrating with a solid-contact Ag/AgCl reference electrode, the flexible sensor realized real-time monitoring of pH level in human sweat. The result disclosed a relatively stable pH value of ~6.5 after perspiration, which was consistent with the ex situ sweat pH test. This work offers a type of MXene-based potentiometric pH sensor for wearable sweat pH monitoring.

8.
Quant Imaging Med Surg ; 13(1): 352-369, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36620171

ABSTRACT

Background: The infrapatellar fat pad (IPFP) plays an important role in the incidence of knee osteoarthritis (OA). Magnetic resonance (MR) signal heterogeneity of the IPFP is related to pathologic changes. In this study, we aimed to investigate whether the IPFP radiomic features have predictive value for incident radiographic knee OA (iROA) 1 year prior to iROA diagnosis. Methods: Data used in this work were obtained from the osteoarthritis initiative (OAI). In this study, iROA was defined as a knee with a baseline Kellgren-Lawrence grade (KLG) of 0 or 1 that further progressed to KLG ≥2 during the follow-up visit. Intermediate-weighted turbo spin-echo knee MR images at the time of iROA diagnosis and 1 year prior were obtained. Five clinical characteristics-age, sex, body mass index, knee injury history, and knee surgery history-were obtained. A total of 604 knees were selected and matched (302 cases and 302 controls). A U-Net segmentation model was independently trained to automatically segment the IPFP. The prediction models were established in the training set (60%). Three main models were generated using (I) clinical characteristics; (II) radiomic features; (III) combined (clinical plus radiomic) features. Model performance was evaluated in an independent testing set (remaining 40%) using the area under the curve (AUC). Two secondary models were also generated using Hoffa-synovitis scores and clinical characteristics. Results: The comparison between the automated and manual segmentations of the IPFP achieved a Dice coefficient of 0.900 (95% CI: 0.891-0.908), which was comparable to that of experienced radiologists. The radiomic features model and the combined model yielded superior AUCs of 0.700 (95% CI: 0.630-0.763) and 0.702 (95% CI: 0.635-0.763), respectively. The DeLong test found no statistically significant difference between the receiver operating curves of the radiomic and combined models (P=0.831); however, both models outperformed the clinical model (P=0.014 and 0.004, respectively). Conclusions: Our results demonstrated that radiomic features of the IPFP are predictive of iROA 1 year prior to the diagnosis, suggesting that IPFP radiomic features can serve as an early quantitative prediction biomarker of iROA.

9.
Comput Biol Med ; 152: 106427, 2023 01.
Article in English | MEDLINE | ID: mdl-36543009

ABSTRACT

To improve the quality of magnetic resonance (MR) image edge segmentation, some researchers applied additional edge labels to train the network to extract edge information and aggregate it with region information. They have made significant progress. However, due to the intrinsic locality of convolution operations, the convolution neural network-based region and edge aggregation has limitations in modeling long-range information. To solve this problem, we proposed a novel transformer-based multilevel region and edge aggregation network for MR image segmentation. To the best of our knowledge, this is the first literature on transformer-based region and edge aggregation. We first extract multilevel region and edge features using a dual-branch module. Then, the region and edge features at different levels are inferred and aggregated through multiple transformer-based inference modules to form multilevel complementary features. Finally, the attention feature selection module aggregates these complementary features with the corresponding level region and edge features to decode the region and edge features. We evaluated our method on a public MR dataset: Medical image computation and computer-assisted intervention atrial segmentation challenge (ASC). Meanwhile, the private MR dataset considered infrapatellar fat pad (IPFP). Our method achieved a dice score of 93.2% for ASC and 91.9% for IPFP. Compared with other 2D segmentation methods, our method improved a dice score by 0.6% for ASC and 3.0% for IPFP.


Subject(s)
Heart Atria , Neural Networks, Computer , Image Processing, Computer-Assisted
10.
Membranes (Basel) ; 12(9)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36135922

ABSTRACT

Solid-contact ion-selective electrodes (SC-ISEs) exhibit great potential in the detection of routine and portable ions which rely on solid-contact (SC) materials for the transduction of ions to electron signals. Carbon-based materials are state-of-the-art SC transducers due to their high electrical double-layer (EDL) capacitance and hydrophobicity. However, researchers have long searched for ways to enhance the interfacial capacitance in order to improve the potential stability. Herein, three representative carbon-based SC materials including nitrogen-doped mesoporous carbon (NMC), reduced graphene oxide (RGO), and carbon nanotubes (CNT) were compared. The results disclose that the NMC has the highest EDL capacitance owing to its mesopore structure and N-doping while maintaining high hydrophobicity so that no obvious water-layer effect was observed. The Ca2+-SC-ISEs based on the SC of NMC exhibited high potential stability compared with RGO and CNT. This work offers a guideline for the development of carbon-material-based SC-ISEs through mesoporous and N-doping engineering to improve the interfacial capacitance. The developed NMC-based solid-contact Ca2+-SC-ISE exhibited a Nernstian slope of 26.3 ± 3.1 mV dec-1 ranging from 10 µM to 0.1 M with a detection limit of 3.2 µM. Finally, a practical application using NMC-based SC-ISEs was demonstrated through Ca2+ ion analysis in mineral water and soil leaching solutions.

11.
Magn Reson Imaging ; 94: 18-24, 2022 12.
Article in English | MEDLINE | ID: mdl-35921982

ABSTRACT

OBJECTIVE: To investigate the characteristics of fat content and component in IFP using hydrogen proton MR spectroscopy (1H-MRS), and to explore the correlation with the severity of OA, Hoffa-synovitis, and knee pain. MATERIALS AND METHODS: 80 volunteers were enrolled. Subjects were grouped based on Kellgren-Lawrence (K-L) grading. Fat fraction (FF) and unsaturation index (UI) of IFP were measured using 1H-MRS. Hoffa-synovitis was evaluated based on the MRI Osteoarthritis Knee Score system (MOAKS). Knee pain was assessed by a self-administered Western Ontario and McMaster Osteoarthritis Index (WOMAC) questionnaire. One-way ANOVA or Kruskal-Wallis test and Spearman's correlation tests were applied for statistical analysis. RESULTS: After matching BMI, waistline, and K-L grade, a total of 64 knees were included and divided into 23 normal, 25 mild OA, and 16 advanced OA. The mean values were 76.79% ± 7.24%, 70.35% ± 7.42%, and 58.29% ± 10.32% for FF in the healthy controls, mild OA, and advanced OA group, and 6.36 ± 1.19%, 6.08 ± 1.35%, and 5.69 ± 1.78% for UI, respectively, the statistical difference was found for FF (p < 0.01). A good negative correlation was observed between the FF and the severity of OA, Hoffa-synovitis (r = -0.625, -0.758, respectively, p < 0.0001), and a weak inverse correlation with knee pain. CONCLUSION: FF alteration in IFP is associated with the severity of OA, Hoffa synovitis, and knee pain, and has the potential to be a new quantitative imaging biomarker in knee OA.


Subject(s)
Osteoarthritis, Knee , Synovitis , Humans , Osteoarthritis, Knee/diagnostic imaging , Protons , Proton Magnetic Resonance Spectroscopy , Hydrogen , Adipose Tissue/diagnostic imaging , Biomarkers , Pain
12.
Anal Chem ; 94(29): 10487-10496, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35839308

ABSTRACT

The determination of ammonium ions (NH4+) is of significance to environmental, agriculture, and human health. Potentiometric NH4+ sensors based on solid-contact ion selective electrodes (SC-ISEs) feature point-of-care testing and miniaturization. However, the state-of-the-art SC-ISEs of NH4+ during the past 20 years strongly rely on the organic ammonium ionophore-based ion selective membrane (ISM), typically by nonactin for the NH4+ recognition. Herein, we report a Prussian blue analogue of copper(II)-hexacyanoferrate (CuHCF) for an ISM-free potentiometric NH4+ sensor without using the ionophores. CuHCF works as a bifunctional transducer that could realize the ion-to-electron transduction and NH4+ recognition. CuHCF exhibits competitive analytical performances regarding traditional nonactin-based SC-ISEs of NH4+, particularly for the selectivity toward K+. The cost and preparation process have been remarkably reduced. The theoretical calculation combined with electrochemical tests further demonstrate that relatively easier intercalation of NH4+ into the lattices of CuHCF determines its selectivity. This work provides a concept of the ISM-free potentiometric NH4+ sensor beyond the nonactin ionophore through a CuHCF bifunctional transducer.


Subject(s)
Ammonium Compounds , Ion-Selective Electrodes , Ferrocyanides , Humans , Ionophores , Macrolides , Transducers
13.
Phys Chem Chem Phys ; 24(22): 13784-13792, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35612400

ABSTRACT

When benchmarked against the extended Pt(111), slightly weaker adsorption and stronger cohesion properties of surface Pt are required to improve activity and durability for the oxygen reduction reaction, respectively, making it challenging to meet both requirements on one surface. Here, using Pt(111) over-layers stressed and modified by Pt-TM (TM = Fe, Co, Ni, V, Cu, Ag, and Pd) intermetallics as examples, we theoretically identified ten promising catalysts by synergistically tailoring the skin thickness and substrate chemical ordering to simultaneously achieve weak adsorption and strong cohesion. More specifically, compared with Pt(111), all candidates exhibit 10-fold enhanced activity, half of which show improved durability, such as mono-layer skin on L12-Pt3Co or Pt3Fe, double-layer Pt on L13-Pt3Ni or Pt3Cu, and triple-layer skin on L11-PtCu, while double- or triple-layer skin on L10-PtCo or PtNi and double-layer skin on L12-PtFe3 show slightly poor durability. Although L10 and L12 based nanocrystals have been demonstrated extensively as outstanding catalysts, L11 and L13 ones hold great application potential. The coexistence of high activity and durability on the same surface is because of the different responses of surface adsorption and cohesion properties to the strain effects and ligand effects. When intermetallic-core@Pt-shell nanocrystals are constructed using this slab model, the necessity of protecting or eliminating low-coordinated Pt and the possibility of maximizing Pt(111) facets and core ordering by morphology engineering were highlighted. The current discovery provides a new paradigm toward the rational design of promising cathodic catalysts.

14.
Membranes (Basel) ; 12(5)2022 May 09.
Article in English | MEDLINE | ID: mdl-35629830

ABSTRACT

Wearable sensors reflect the real-time physiological information and health status of individuals by continuously monitoring biochemical markers in biological fluids, including sweat, tears and saliva, and are a key technology to realize portable personalized medicine. Flexible electrochemical pH sensors can play a significant role in health since the pH level affects most biochemical reactions in the human body. pH indicators can be used for the diagnosis and treatment of diseases as well as the monitoring of biological processes. The performances and applications of wearable pH sensors depend significantly on the properties of the pH-sensitive materials used. At present, existing pH-sensitive materials are mainly based on polyaniline (PANI), hydrogen ionophores (HIs) and metal oxides (MOx). In this review, we will discuss the recent progress in wearable pH sensors based on these sensitive materials. Finally, a viewpoint for state-of-the-art wearable pH sensors and a discussion of their existing challenges are presented.

15.
Eur Radiol ; 32(7): 4718-4727, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35141779

ABSTRACT

OBJECTIVES: To investigate the efficacy of fat fraction (FF) and T2* relaxation based on DIXON in the assessment of infrapatellar fat pad (IFP) for knee osteoarthritis (KOA) progression in older adults. METHODS: Ninety volunteers (age range 51-70 years, 65 females) were enrolled in this study. Participants were grouped based on the Kellgren-Lawrence grading (KLG). The FF and T2* values were measured based on the 3D-modified DXION technique. Cartilage defects, bone marrow lesions, and synovitis were assessed based on a modified version of whole-organ magnetic resonance imaging score (WORMS). Knee pain was assessed by self-administered Western Ontario and McMaster Osteoarthritis Index (WOMAC) questionnaire. The differences of FF and T2* measurement and the correlation with WORMS and WOMAC assessments were analyzed. Diagnostic efficiency was analyzed by using receiver operating characteristic (ROC) curves. RESULTS: A total of 60 knees were finally included (n = 20 in each group). The values were 82.6 ± 3.7%, 74.7 ± 5.4%, and 60.5 ± 14.1% for FF is the no OA, mild OA, and advanced OA groups, and were 50.7 ± 6.6 ms, 44.1 ± 6.6 ms, and 39.1 ± 4.2 ms for T2*, respectively (all p values < 0.001). The WORMS assessment and WOMAC pain assessment showed negative correlation with FF and T2* values. The ROC showed the area under the curve (AUC), sensitivity, and specificity for diagnosing OA were 0.93, 77.5%, and 100% using FF, and were 0.86, 75.0%, and 90.0% using T2*, respectively. CONCLUSIONS: FF and T2* alternations in IFP are associated with knee structural abnormalities and clinical symptoms cross-sectionally and may have the potential to predict the severity of KOA. KEY POINTS: • Fat fraction (FF) and T2* relaxation based on DIXON imaging are novel methods to quantitatively assess the infrapatellar fat pad for knee osteoarthritis (KOA) progression in older adults. • The alterations of FF and T2* using mDIXON technique in IFP were associated with knee structural abnormalities and clinical symptoms. • FF and T2* alternations in IFP can serve as the new imaging biomarkers for fast, simple, and noninvasive assessment in KOA.


Subject(s)
Cartilage, Articular , Osteoarthritis, Knee , Adipose Tissue/diagnostic imaging , Adipose Tissue/pathology , Aged , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Female , Humans , Knee Joint/diagnostic imaging , Knee Joint/pathology , Magnetic Resonance Imaging/methods , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/pathology , Protons
16.
ACS Meas Sci Au ; 2(6): 568-575, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36785773

ABSTRACT

Solid-contact ion-selective electrodes are a type of ion measurement devices that have been focused in wearable biotechnology based on the features of miniaturization and integration. However, the solid-contact reference electrodes (SC-REs) remain relatively less focused compared with numerous working (or indicator) electrodes. Most SC-REs in wearable sensors rely on Ag/AgCl reference electrodes with solid electrolytes, for example, the hydrophilic electrolyte salts in polymer matrix, but face the risk of electrolyte leakage. Herein, we report a type of SC-REs based on the silver/silver tetraphenylborate (Ag/AgTPB) organic insoluble electrode. The SC-RE consists of a Ag substrate, a solid contact (AgTPB), and a plasticized poly(vinyl chloride) (PVC) membrane containing the hydrophobic organic salt of tetrabutylammonium tetraphenylborate (TBATPB). The potentiometric measurements demonstrated that the SC-RE of Ag/AgTPB/PVC-TBATPB showed a reproducible standard potential in various electrolytes and disclosed high long-term stability. This SC-RE was further fabricated on a flexible substrate and integrated into all-solid-state wearable potentiometric ion sensor for sweat Cl- monitoring.

17.
Membranes (Basel) ; 11(12)2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34940460

ABSTRACT

Current solid potentiometric ion sensors mostly rely on polymeric-membrane-based, solid-contact, ion-selective electrodes (SC-ISEs). However, anion sensing has been a challenge with respect to cations due to the rareness of anion ionophores. Classic metal/metal insoluble salt electrodes (such as Ag/AgCl) without an ion-selective membrane (ISM) offer an alternative. In this work, we first compared the two types of SC-ISEs of Cl- with/without the ISM. It is found that the ISM-free Ag/AgCl electrode discloses a comparable selectivity regarding organic chloride ionophores. Additionally, the electrode exhibits better comprehensive performances (stability, reproducibility, and anti-interference ability) than the ISM-based SC-ISE. In addition to Cl-, other Ag/AgX electrodes also work toward single and multi-valent anions sensing. Finally, a flexible Cl- sensor was fabricated for on-body monitoring the concentration of sweat Cl- to illustrate a proof-of-concept application in wearable anion sensors. This work re-emphasizes the ISM-free SC-ISEs for solid anion sensing.

18.
Anal Chem ; 93(21): 7588-7595, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34008950

ABSTRACT

The solid-contact ion-selective electrodes (SC-ISEs) are a type of potentiometric analytical device with features of rapid response, online analysis, and miniaturization. The state-of-the-art SC-ISEs are composed of a solid-contact (SC) layer and an ion-selective membrane (ISM) layer with respective functions of ion-to-electron transduction and ion recognition. Two challenges for the SC-ISEs are the water-layer formation at the SC/ISM phase boundary and the leaking of ISM components, which are both originated from the ISM. Herein, we report a type of SC-ISE based on classic Li-ion battery materials as the SC layer without using the ISM for potentiometric lithium-ion sensing. Both LiFePO4- and LiMn2O4-based SC-ISEs display good Li+ sensing properties (sensitivity, selectivity, and stability). The proposed LiFePO4 electrode exhibits comparable sensitivity and a linear range to conventional SC-ISEs with ISM. Owing to the nonexistence of ISM, the LiFePO4 electrode displays high potential stability. Besides, the LiMn2O4 electrode shows a Nernstian response toward Li+ sensing in a human blood serum solution. This work emphasizes the concept of non-ISM-based SC-ISEs for potentiometric ion sensing.


Subject(s)
Ion-Selective Electrodes , Lithium , Electric Power Supplies , Humans , Ions , Potentiometry
19.
Clin Infect Dis ; 73(11): e4166-e4174, 2021 12 06.
Article in English | MEDLINE | ID: mdl-32706859

ABSTRACT

BACKGROUND: We compared the efficacy of the antiviral agent, remdesivir, versus standard-of-care treatment in adults with severe coronavirus disease 2019 (COVID-19) using data from a phase 3 remdesivir trial and a retrospective cohort of patients with severe COVID-19 treated with standard of care. METHODS: GS-US-540-5773 is an ongoing phase 3, randomized, open-label trial comparing two courses of remdesivir (remdesivir-cohort). GS-US-540-5807 is an ongoing real-world, retrospective cohort study of clinical outcomes in patients receiving standard-of-care treatment (non-remdesivir-cohort). Inclusion criteria were similar between studies: patients had confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, were hospitalized, had oxygen saturation ≤94% on room air or required supplemental oxygen, and had pulmonary infiltrates. Stabilized inverse probability of treatment weighted multivariable logistic regression was used to estimate the treatment effect of remdesivir versus standard of care. The primary endpoint was the proportion of patients with recovery on day 14, dichotomized from a 7-point clinical status ordinal scale. A key secondary endpoint was mortality. RESULTS: After the inverse probability of treatment weighting procedure, 312 and 818 patients were counted in the remdesivir- and non-remdesivir-cohorts, respectively. At day 14, 74.4% of patients in the remdesivir-cohort had recovered versus 59.0% in the non-remdesivir-cohort (adjusted odds ratio [aOR] 2.03: 95% confidence interval [CI]: 1.34-3.08, P < .001). At day 14, 7.6% of patients in the remdesivir-cohort had died versus 12.5% in the non-remdesivir-cohort (aOR 0.38, 95% CI: .22-.68, P = .001). CONCLUSIONS: In this comparative analysis, by day 14, remdesivir was associated with significantly greater recovery and 62% reduced odds of death versus standard-of-care treatment in patients with severe COVID-19. CLINICAL TRIALS REGISTRATION: NCT04292899 and EUPAS34303.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Adult , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , Cohort Studies , Humans , Oxygen Saturation , Retrospective Studies , SARS-CoV-2 , Standard of Care , Treatment Outcome
20.
Lancet ; 396(10246): 239-254, 2020 07 25.
Article in English | MEDLINE | ID: mdl-32711800

ABSTRACT

BACKGROUND: Tenofovir alafenamide shows high antiviral efficacy and improved renal and bone safety compared with tenofovir disoproxil fumarate when used for HIV treatment. Here, we report primary results from a blinded phase 3 study evaluating the efficacy and safety of pre-exposure prophylaxis (PrEP) with emtricitabine and tenofovir alafenamide versus emtricitabine and tenofovir disoproxil fumarate for HIV prevention. METHODS: This study is an ongoing, randomised, double-blind, multicentre, active-controlled, phase 3, non-inferiority trial done at 94 community, public health, and hospital-associated clinics located in regions of Europe and North America, where there is a high incidence of HIV or prevalence of people living with HIV, or both. We enrolled adult cisgender men who have sex with men and transgender women who have sex with men, both with a high risk of acquiring HIV on the basis of their self-reported sexual behaviour in the past 12 weeks or their recent history (within 24 weeks of enrolment) of bacterial sexually transmitted infections. Participants with current or previous use of PrEP with emtricitabine and tenofovir disoproxil fumarate were not excluded. We used a computer-generated random allocation sequence to randomly assign (1:1) participants to receive either emtricitabine (200 mg) and tenofovir alafenamide (25 mg) tablets daily, with matched placebo tablets (emtricitabine and tenofovir alafenamide group), or emtricitabine (200 mg) and tenofovir disoproxil fumarate (300 mg) tablets daily, with matched placebo tablets (emtricitabine and tenofovir disoproxil fumarate group). As such, all participants were given two tablets. The trial sponsor, investigators, participants, and the study staff who provided the study drugs, assessed the outcomes, and collected the data were masked to group assignment. The primary efficacy outcome was incident HIV infection, which was assessed when all participants had completed 48 weeks of follow-up and half of all participants had completed 96 weeks of follow-up. This full analysis set included all randomly assigned participants who had received at least one dose of the assigned study drug and had at least one post-baseline HIV test. Non-inferiority of emtricitabine and tenofovir alafenamide to emtricitabine and tenofovir disoproxil fumarate was established if the upper bound of the 95·003% CI of the HIV incidence rate ratio (IRR) was less than the prespecified non-inferiority margin of 1·62. We prespecified six secondary bone mineral density and renal biomarker safety endpoints to evaluate using the safety analysis set. This analysis set included all randomly assigned participants who had received at least one dose of the assigned study drug. This trial is registered with ClinicalTrials.gov, NCT02842086, and is no longer recruiting. FINDINGS: Between Sept 13, 2016, and June 30, 2017, 5387 (92%) of 5857 participants were randomly assigned and received emtricitabine and tenofovir alafenamide (n=2694) or emtricitabine and tenofovir disoproxil fumarate (n=2693). At the time of the primary efficacy analysis (ie, when all participants had completed 48 weeks and 50% had completed 96 weeks) emtricitabine and tenofovir alafenamide was non-inferior to emtricitabine and tenofovir disoproxil fumarate for HIV prevention, as the upper limit of the 95% CI of the IRR, was less than the prespecified non-inferiority margin of 1·62 (IRR 0·47 [95% CI 0·19-1·15]). After 8756 person-years of follow-up, 22 participants were diagnosed with HIV, seven participants in the emtricitabine and tenofovir alafenamide group (0·16 infections per 100 person-years [95% CI 0·06-0·33]), and 15 participants in the emtricitabine and tenofovir disoproxil fumarate group (0·34 infections per 100 person-years [0·19-0·56]). Both regimens were well tolerated, with a low number of participants reporting adverse events that led to discontinuation of the study drug (36 [1%] of 2694 participants in the emtricitabine and tenofovir alafenamide group vs 49 [2%] of 2693 participants in the emtricitabine and tenofovir disoproxil fumarate group). Emtricitabine and tenofovir alafenamide was superior to emtricitabine and tenofovir disoproxil fumarate in all six prespecified bone mineral density and renal biomarker safety endpoints. INTERPRETATION: Daily emtricitabine and tenofovir alafenamide shows non-inferior efficacy to daily emtricitabine and tenofovir disoproxil fumarate for HIV prevention, and the number of adverse events for both regimens was low. Emtricitabine and tenofovir alafenamide had more favourable effects on bone mineral density and biomarkers of renal safety than emtricitabine and tenofovir disoproxil fumarate. FUNDING: Gilead Sciences.


Subject(s)
Adenine/analogs & derivatives , Anti-HIV Agents/therapeutic use , Emtricitabine, Tenofovir Disoproxil Fumarate Drug Combination/therapeutic use , Emtricitabine/therapeutic use , HIV Infections/drug therapy , Tenofovir/therapeutic use , Adenine/adverse effects , Adenine/therapeutic use , Adult , Anti-HIV Agents/adverse effects , Double-Blind Method , Emtricitabine/adverse effects , Emtricitabine, Tenofovir Disoproxil Fumarate Drug Combination/adverse effects , Europe/epidemiology , Female , HIV Infections/epidemiology , HIV Infections/prevention & control , HIV-1/drug effects , Homosexuality, Male/ethnology , Humans , Male , North America/epidemiology , Placebos/administration & dosage , Pre-Exposure Prophylaxis/methods , Prevalence , Safety , Sexual and Gender Minorities , Tenofovir/adverse effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...