Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(17): e202318811, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38419371

ABSTRACT

In nature, ceramides are a class of sphingolipids possessing a unique ability to self-assemble into protein-permeable channels with intriguing concentration-dependent adaptive channel cavities. However, within the realm of artificial ion channels, this interesting phenomenon is scarcely represented. Herein, we report on a novel class of adaptive artificial channels, Pn-TPPs, based on PEGylated cholic acids bearing triphenylphosphonium (TPP) groups as anion binding motifs. Interestingly, the molecules self-assemble into chloride ion channels at low concentrations while transforming into small molecule-permeable nanopores at high concentrations. Moreover, the TPP groups endow the molecules with mitochondria-targeting properties, enabling them to selectively drill holes on the mitochondrial membrane of cancer cells and subsequently trigger the caspase 9 apoptotic pathway. The anticancer efficacies of Pn-TPPs correlate with their abilities to form nanopores. Significantly, the most active ensembles formed by P5-TPP exhibits impressive anticancer activity against human liver cancer cells, with an IC50 value of 3.8 µM. While demonstrating similar anticancer performance to doxorubicin, P5-TPP exhibits a selectivity index surpassing that of doxorubicin by a factor of 16.8.


Subject(s)
Nanopores , Humans , Ion Channels , Organophosphorus Compounds/chemistry , Doxorubicin/chemistry
2.
Angew Chem Int Ed Engl ; 63(3): e202314666, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37864456

ABSTRACT

The development of stimuli-responsive artificial H+ /Cl- ion channels, capable of specifically disturbing the intracellular ion homeostasis of cancer cells, presents an intriguing opportunity for achieving high selectivity in cancer therapy. Herein, we describe a novel family of non-covalently stapled self-assembled artificial channels activatable by biocompatible visible light at 442 nm, which enables the co-transport of H+ /Cl- across the membrane with H+ /Cl- transport selectivity of 6.0. Upon photoirradiation of the caged C4F-L for 10 min, 90 % of ion transport efficiency can be restored, giving rise to a 10.5-fold enhancement in cytotoxicity against human colorectal cancer cells (IC50 =8.5 µM). The mechanism underlying cancer cell death mediated by the H+ /Cl- channels involves the activation of the caspase 9 apoptosis pathway as well as the scarcely reported disruption of the autophagic processes. In the absence of photoirradiation, C4F-L exhibits minimal toxicity towards normal intestine cells, even at a concentration of 200 µM.


Subject(s)
Ion Channels , Neoplasms , Humans , Ion Channels/metabolism , Ion Transport , Light , Chlorides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...