Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
mSphere ; : e0032124, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287429

ABSTRACT

Nucleotide secondary messengers regulate various processes in bacteria allowing them to rapidly respond to changes in environmental conditions. c-di-AMP is an essential second messenger required for the growth of the human pathogen Staphylococcus aureus, regulating potassium, osmolyte uptake, and beta-lactam resistance. Cellular concentrations of c-di-AMP are regulated by the activities of two enzymes, DacA and GdpP, which synthesize and hydrolyze c-di-AMP, respectively. Besides these, only a limited number of other factors are known to regulate c-di-AMP levels. Using a c-di-AMP biosensor consisting of the Bacillus subtilis c-di-AMP-binding kimA riboswitch and yfp, we were able to efficiently detect differences in cellular c-di-AMP levels in S. aureus. To identify novel factors that regulate c-di-AMP levels, we introduced the biosensor into a library of S. aureus transposon mutants. In this manner, we obtained mutants with increased c-di-AMP levels that contained insertions in gdpP coding for the c-di-AMP hydrolase and ybbR (cdaR) coding for a c-di-AMP cyclase regulator, thus validating our screen. We also identified two high c-di-AMP mutants with insertions upstream of the nrdIEF operon coding for the ribonucleotide reductase enzyme. Further analysis revealed that the insertion down-regulated nrdIEF expression, indicating that the enzyme is a negative regulator of c-di-AMP production. This negative regulation was dependent on rsh, encoding for the synthase of the endogenous GdpP inhibitor (p)ppGpp. The methods established in this work can be readily adapted for use in other bacteria to uncover genetic or environmental factors regulating c-di-AMP levels.IMPORTANCEc-di-AMP is an important secondary messenger, produced by many bacterial species including the opportunistic pathogen Staphylococcus aureus. In this bacterium, c-di-AMP controls cell wall homeostasis, cell size, and osmotic balance. In addition, it has been shown that strains with high c-di-AMP levels exhibit increased resistance to beta-lactam antibiotics. Here, we developed a biosensor-based method for the rapid detection of c-di-AMP levels in S. aureus. We utilized the biosensor in a genetic screen for the identification of novel factors that impact cellular c-di-AMP. In this manner, we identified the ribonucleotide reductase as a novel factor altering cellular c-di-AMP levels and showed that reducing its expression leads to increased cellular c-di-AMP levels. As methicillin-resistant S. aureus strains are considered as a global health threat, it is important to study processes that dictate cellular c-di-AMP levels, which are associated with antibiotic resistance.

2.
Commun Biol ; 7(1): 179, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351154

ABSTRACT

The translocated intimin receptor (Tir) is an essential type III secretion system (T3SS) effector of attaching and effacing pathogens contributing to the global foodborne disease burden. Tir acts as a cell-surface receptor in host cells, rewiring intracellular processes by targeting multiple host proteins. We investigated the molecular basis for Tir's binding diversity in signalling, finding that Tir is a disordered protein with host-like binding motifs. Unexpectedly, also are several other T3SS effectors. By an integrative approach, we reveal that Tir dimerises via an antiparallel OB-fold within a highly disordered N-terminal cytosolic domain. Also, it has a long disordered C-terminal cytosolic domain partially structured at host-like motifs that bind lipids. Membrane affinity depends on lipid composition and phosphorylation, highlighting a previously unrecognised host interaction impacting Tir-induced actin polymerisation and cell death. Furthermore, multi-site tyrosine phosphorylation enables Tir to engage host SH2 domains in a multivalent fuzzy complex, consistent with Tir's scaffolding role and binding promiscuity. Our findings provide insights into the intracellular Tir domains, highlighting the ability of T3SS effectors to exploit host-like protein disorder as a strategy for host evasion.


Subject(s)
Escherichia coli Proteins , Escherichia coli Proteins/metabolism , Carrier Proteins , Receptors, Cell Surface/metabolism
3.
Mol Microbiol ; 117(2): 480-492, 2022 02.
Article in English | MEDLINE | ID: mdl-34897856

ABSTRACT

The enteropathogenic Escherichia coli (EPEC) type III secretion system effector Tir, which mediates intimate bacterial attachment to epithelial cells, also triggers Ca2+ influx followed by LPS entry and caspase-4-dependent pyroptosis, which could be antagonized by the effector NleF. Here we reveal the mechanism by which EPEC induces Ca2+ influx. We show that in the intestinal epithelial cell line SNU-C5, Tir activates the mechano/osmosensitive cation channel TRPV2 which triggers extracellular Ca2+ influx. Tir-induced Ca2+ influx could be blocked by siRNA silencing of TRPV2, pre-treatment with the TRPV2 inhibitor SET2 or by growing cells in low osmolality medium. Pharmacological activation of TRPV2 in the absence of Tir failed to initiate caspase-4-dependent cell death, confirming the necessity of Tir. Consistent with the model implicating activation on translocation of TRPV2 from the ER to plasma membrane, inhibition of protein trafficking by either brefeldin A or the effector NleA prevented TRPV2 activation and cell death. While infection with EPECΔnleA triggered pyroptotic cell death, this could be prevented by NleF. Taken together this study shows that while integration of Tir into the plasma membrane activates TRPV2, EPEC uses NleA to inhibit TRPV2 trafficking and NleF to inhibit caspase-4 and pyroptosis.


Subject(s)
Enteropathogenic Escherichia coli , Escherichia coli Proteins , Enteropathogenic Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Protein Transport , Pyroptosis , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
4.
PLoS Biol ; 18(12): e3000986, 2020 12.
Article in English | MEDLINE | ID: mdl-33378358

ABSTRACT

Clustering of the enteropathogenic Escherichia coli (EPEC) type III secretion system (T3SS) effector translocated intimin receptor (Tir) by intimin leads to actin polymerisation and pyroptotic cell death in macrophages. The effect of Tir clustering on the viability of EPEC-infected intestinal epithelial cells (IECs) is unknown. We show that EPEC induces pyroptosis in IECs in a Tir-dependent but actin polymerisation-independent manner, which was enhanced by priming with interferon gamma (IFNγ). Mechanistically, Tir clustering triggers rapid Ca2+ influx, which induces lipopolysaccharide (LPS) internalisation, followed by activation of caspase-4 and pyroptosis. Knockdown of caspase-4 or gasdermin D (GSDMD), translocation of NleF, which blocks caspase-4 or chelation of extracellular Ca2+, inhibited EPEC-induced cell death. IEC lines with low endogenous abundance of GSDMD were resistant to Tir-induced cell death. Conversely, ATP-induced extracellular Ca2+ influx enhanced cell death, which confirmed the key regulatory role of Ca2+ in EPEC-induced pyroptosis. We reveal a novel mechanism through which infection with an extracellular pathogen leads to pyroptosis in IECs.


Subject(s)
Calcium/metabolism , Escherichia coli Proteins/metabolism , Pyroptosis/physiology , Receptors, Cell Surface/metabolism , Actins/metabolism , Adhesins, Bacterial/metabolism , Adhesins, Bacterial/physiology , Cluster Analysis , Enteropathogenic Escherichia coli/metabolism , Enteropathogenic Escherichia coli/pathogenicity , Epithelial Cells/metabolism , Escherichia coli Infections/metabolism , Escherichia coli Proteins/physiology , HeLa Cells , Humans , Intestinal Mucosa/metabolism , Intestines/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Protein Transport , Receptors, Cell Surface/physiology , Signal Transduction/physiology , Type III Secretion Systems/metabolism
5.
J Biol Chem ; 293(9): 3180-3200, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29326168

ABSTRACT

Cyclic di-adenosine monophosphate (c-di-AMP) is a recently discovered signaling molecule important for the survival of Firmicutes, a large bacterial group that includes notable pathogens such as Staphylococcus aureus However, the exact role of this molecule has not been identified. dacA, the S. aureus gene encoding the diadenylate cyclase enzyme required for c-di-AMP production, cannot be deleted when bacterial cells are grown in rich medium, indicating that c-di-AMP is required for growth in this condition. Here, we report that an S. aureus dacA mutant can be generated in chemically defined medium. Consistent with previous findings, this mutant had a severe growth defect when cultured in rich medium. Using this growth defect in rich medium, we selected for suppressor strains with improved growth to identify c-di-AMP-requiring pathways. Mutations bypassing the essentiality of dacA were identified in alsT and opuD, encoding a predicted amino acid and osmolyte transporter, the latter of which we show here to be the main glycine betaine-uptake system in S. aureus. Inactivation of these transporters likely prevents the excessive osmolyte and amino acid accumulation in the cell, providing further evidence for a key role of c-di-AMP in osmotic regulation. Suppressor mutations were also obtained in hepS, hemB, ctaA, and qoxB, coding proteins required for respiration. Furthermore, we show that dacA is dispensable for growth in anaerobic conditions. Together, these findings reveal an essential role for the c-di-AMP signaling network in aerobic, but not anaerobic, respiration in S. aureus.


Subject(s)
Amino Acids, Cyclic/metabolism , Microbial Viability , Osmosis , Staphylococcus aureus/physiology , Anaerobiosis , Bacterial Proteins/genetics , Betaine/metabolism , Cell Size , Membrane Potentials , Mutation , Reactive Oxygen Species/metabolism , Staphylococcus aureus/cytology , Staphylococcus aureus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL