Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 394
Filter
1.
Anal Chem ; 96(23): 9610-9620, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38822784

ABSTRACT

The emerging field of nanoscale infrared (nano-IR) offers label-free molecular contrast, yet its imaging speed is limited by point-by-point traverse acquisition of a three-dimensional (3D) data cube. Here, we develop a spatial-spectral network (SS-Net), a miniaturized deep-learning model, together with compressive sampling to accelerate the nano-IR imaging. The compressive sampling is performed in both the spatial and spectral domains to accelerate the imaging process. The SS-Net is trained to learn the mapping from small nano-IR image patches to the corresponding spectra. With this elaborated mapping strategy, the training can be finished quickly within several minutes using the subsampled data, eliminating the need for a large-labeled dataset of common deep learning methods. We also designed an efficient loss function, which incorporates the image and spectral similarity to enhance the training. We first validate the SS-Net on an open stimulated Raman-scattering dataset; the results exhibit the potential of 10-fold imaging speed improvement with state-of-the-art performance. We then demonstrate the versatility of this approach on atomic force microscopy infrared (AFM-IR) microscopy with 7-fold imaging speed improvement, even on nanoscale Fourier transform infrared (nano-FTIR) microscopy with up to 261.6 folds faster imaging speed. We further showcase the generalization of this method on AFM-force volume-based multiparametric nanoimaging. This method establishes a paradigm for rapid nano-IR imaging, opening new possibilities for cutting-edge research in materials, photonics, and beyond.

2.
Anal Chem ; 96(23): 9399-9407, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38804597

ABSTRACT

Fast and efficient sample pretreatment is the prerequisite for realizing surface-enhanced Raman spectroscopy (SERS) detection of trace targets in complex matrices, which is still a big issue for the practical application of SERS. Recently, we have proposed a highly performed liquid-liquid extraction (LLE)-back extraction (BE) for weak acids/bases extraction in drinking water and beverage samples. However, the performance efficiency decreased drastically on facing matrices like food and biological blood. Based on the total interaction energies among target, interferent, and extractant molecules, solid-phase extraction (SPE) with a higher selectivity was introduced in advance of LLE-BE, which enabled the sensitive (µg L-1 level) and rapid (within 10 min) SERS detection of both koumine (a weak base) and celastrol (a weak acid) in different food and biological samples. Further, the high SERS sensitivity was determined unmanned by Vis-CAD (a machine learning algorithm), instead of the highly demanded expert recognition. The generality of SPE-LLE-BE for various weak acids/bases (2 < pKa < 12), accompanied by the high efficiency, easy operation, and low cost, offers SERS as a powerful on-site and efficient inspection tool in food safety and forensics.


Subject(s)
Solid Phase Extraction , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Liquid-Liquid Extraction , Humans , Pentacyclic Triterpenes , Food Analysis/methods , Metal Nanoparticles/chemistry
3.
Chemphyschem ; : e202400330, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676545

ABSTRACT

Copper is widely used in everyday life and industrial production because of its good electrical and thermal conductivity. To overcome copper oxidation and maintain its good physical properties, small organic molecules adsorbed on the surface of copper make a passivated layer to further avoid copper corrosion. In this work, we have investigated thioglycolic acid (TGA, another name is mercaptoacetic acid) adsorbed on copper surfaces by using density functional theory (DFT) calculations and a periodical slab model. We first get five stable adsorption structures, and the binding interaction between TGA and Cu(111) surfaces by using density of states (DOS), indicating that the most stable configuration adopts a triple-end binding model. Then, we analyze the vibrational Raman spectra of TGA adsorbed on the Cu(111) surface and make vibrational assignments according to the vibrational vectors. Finally, we explore the temperature effect of the thermodynamically Gibbs free energy of TGA on the Cu(111) surface and the antioxidant ability of the small organic molecular layer of copper oxidation on the copper surface. Our calculated results further provide evidences to interpret the stability of adsorption structures and antioxidant properties of copper.

4.
J Am Chem Soc ; 146(22): 15320-15330, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38683738

ABSTRACT

Palladium hydrides (PdHx) are pivotal in both fundamental research and practical applications across a wide spectrum. PdHx nanocrystals, synthesized by heating in dimethylformamide (DMF), exhibit remarkable stability, granting them widespread applications in the field of electrocatalysis. However, this stability appears inconsistent with their metastable nature. The substantial challenges in characterizing nanoscale structures contribute to the limited understanding of this anomalous phenomenon. Here, through a series of well-conceived experimental designs and advanced characterization techniques, including aberration-corrected scanning transmission electron microscopy (AC-STEM), in situ X-ray diffraction (XRD), and time-of-flight secondary ion mass spectrometry (TOF-SIMS), we have uncovered evidence that indicates the presence of C and N within the lattice of Pd (PdCxNy), rather than H (PdHx). By combining theoretical calculations, we have thoroughly studied the potential configurations and thermodynamic stability of PdCxNy, demonstrating a 2.5:1 ratio of C to N infiltration into the Pd lattice. Furthermore, we successfully modulated the electronic structure of Pd nanocrystals through C and N doping, enhancing their catalytic activity in methanol oxidation reactions. This breakthrough provides a new perspective on the structure and composition of Pd-based nanocrystals infused with light elements, paving the way for the development of advanced catalytic materials in the future.

5.
Nat Mater ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589543

ABSTRACT

Unconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS2, WSe2, MoS2 and MoSe2, via a facile and rapid wet-chemical method. The as-synthesized 4H-Au@1T'-TMD core-shell NWs can be used for ultrasensitive surface-enhanced Raman scattering (SERS) detection. For instance, the 4H-Au@1T'-WS2 NWs have achieved attomole-level SERS detections of Rhodamine 6G and a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. This work provides insights into the preparation of high-phase-purity and stable 1T'-TMD MLs on metal substrates or templates, showing great potential in various promising applications.

6.
Anal Chem ; 96(17): 6550-6557, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38642045

ABSTRACT

There is growing interest in developing a high-performance self-supervised denoising algorithm for real-time chemical hyperspectral imaging. With a good understanding of the working function of the zero-shot Noise2Noise-based denoising algorithm, we developed a self-supervised Signal2Signal (S2S) algorithm for real-time denoising with a single chemical hyperspectral image. Owing to the accurate distinction and capture of the weak signal from the random fluctuating noise, S2S displays excellent denoising performance, even for the hyperspectral image with a spectral signal-to-noise ratio (SNR) as low as 1.12. Under this condition, both the image clarity and the spatial resolution could be significantly improved and present an almost identical pattern with a spectral SNR of 7.87. The feasibility of real-time denoising during imaging was well demonstrated, and S2S was applied to monitor the photoinduced exfoliation of transition metal dichalcogenide, which is hard to accomplish by confocal Raman spectroscopy. In general, the real-time denoising capability of S2S offers an easy way toward in situ/in vivo/operando research with much improved spatial and temporal resolution. S2S is open-source at https://github.com/3331822w/Signal2signal and will be accessible online at https://ramancloud.xmu.edu.cn/tutorial.

7.
Angew Chem Int Ed Engl ; : e202405379, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639181

ABSTRACT

Due to the superior catalytic activity and efficient utilization of noble metals, nanocatalysts are extensively used in the modern industrial production of chemicals. The surface structures of these materials are significantly influenced by reactive adsorbates, leading to dynamic behavior under experimental conditions. The dynamic nature poses significant challenges in studying the structure-activity relations of catalysts. Herein, we unveil an anomalous entropic effect on catalysis via surface pre-melting of nanoclusters through machine learning accelerated molecular dynamics and free energy calculation. We find that due to the pre-melting of shell atoms, there exists a non-linear variation in the catalytic activity of the nanoclusters with temperature. Consequently, two notable changes in catalyst activity occur at the respective temperatures of melting for the shell and core atoms. We further study the nanoclusters with surface point defects, i.e. vacancy and ad-atom, and observe significant decrease in the surface melting temperatures of the nanoclusters, enabling the reaction to take place under more favorable and milder conditions. These findings not only provide novel insights into dynamic catalysis of nanoclusters but also offer new understanding of the role of point defects in catalytic processes.

8.
Angew Chem Int Ed Engl ; 63(20): e202403114, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38488787

ABSTRACT

The conversion of methane under ambient conditions has attracted significant attention. Although advancements have been made using active oxygen species from photo- and electro- chemical processes, challenges such as complex catalyst design, costly oxidants, and unwanted byproducts remain. This study exploits the concept of contact-electro-catalysis, initiating chemical reactions through charge exchange at a solid-liquid interface, to report a novel process for directly converting methane under ambient conditions. Utilizing the electrification of commercially available Fluorinated Ethylene Propylene (FEP) with water under ultrasound, we demonstrate how this interaction promote the activation of methane and oxygen molecules. Our results show that the yield of HCHO and CH3OH can reach 467.5 and 151.2 µmol ⋅ gcat -1, respectively. We utilized electron paramagnetic resonance (EPR) to confirm the evolution of hydroxyl radicals (⋅OH) and superoxide radicals (⋅OOH). Isotope mass spectrometry (MS) was employed to analyze the elemental origin of CH3OH, which can be further oxidized to HCHO. Additionally, we conducted density functional theory (DFT) simulations to assess the reaction energies of FEP with H2O, O2, and CH4 under these conditions. The implications of this methodology, with its potential applicability to a wider array of gas-phase catalytic reactions, underscore a significant advance in catalysis.

9.
Chem Soc Rev ; 53(7): 3579-3605, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38421335

ABSTRACT

Sixty years ago, Reddy, Devanatan, and Bockris performed the first in situ electrochemical ellipsometry experiment, which ushered in a new era in the study of electrochemistry, using optical spectroscopy. After six decades of development, electrochemical optical spectroscopy, particularly electrochemical vibrational spectroscopy, has advanced from a phase of immaturity with few methods and limited applications to a phase of maturity with excellent substrate generality and significantly improved resolutions. Here, we divide the development of electrochemical optical spectroscopy into four phases, focusing on the proof-of-concept of different electrochemical optical spectroscopy studies, the emergence of plasmonic enhancement-based electrochemical optical spectroscopic (in particular vibrational spectroscopic) methods, the realization of electrochemical vibrational spectroscopy on well-defined surfaces, and the efforts to achieve operando spectroelectrochemical applications. Finally, we discuss the future development trend of electrochemical optical spectroscopy, as well as examples of new methodology and research paradigms for operando spectroelectrochemistry.

10.
Anal Chem ; 96(10): 4086-4092, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38412039

ABSTRACT

Denoising is a necessary step in image analysis to extract weak signals, especially those hardly identified by the naked eye. Unlike the data-driven deep-learning denoising algorithms relying on a clean image as the reference, Noise2Noise (N2N) was able to denoise the noise image, providing sufficiently noise images with the same subject but randomly distributed noise. Further, by introducing data augmentation to create a big data set and regularization to prevent model overfitting, zero-shot N2N-based denoising was proposed in which only a single noisy image was needed. Although various N2N-based denoising algorithms have been developed with high performance, their complicated black box operation prevented the lightweight. Therefore, to reveal the working function of the zero-shot N2N-based algorithm, we proposed a lightweight Peak2Peak algorithm (P2P) and qualitatively and quantitatively analyzed its denoising behavior on the 1D spectrum and 2D image. We found that the high-performance denoising originates from the trade-off balance between the loss function and regularization in the denoising module, where regularization is the switch of denoising. Meanwhile, the signal extraction is mainly from the self-supervised characteristic learning in the data augmentation module. Further, the lightweight P2P improved the denoising speed by at least ten times but with little performance loss, compared with that of the current N2N-based algorithms. In general, the visualization of P2P provides a reference for revealing the working function of zero-shot N2N-based algorithms, which would pave the way for the application of these algorithms toward real-time (in situ, in vivo, and operando) research improving both temporal and spatial resolutions. The P2P is open-source at https://github.com/3331822w/Peak2Peakand will be accessible online access at https://ramancloud.xmu.edu.cn/tutorial.

11.
J Am Chem Soc ; 146(3): 2227-2236, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38224553

ABSTRACT

Charged microdroplets offer novel electrochemical environments, distinct from traditional solid-liquid or solid-liquid-gas interfaces, due to the intense electric fields at liquid-gas interfaces. In this study, we propose that charged microdroplets serve as microelectrochemical cells (MECs), enabling unique electrochemical reactions at the gas-liquid interface. Using electrospray-generated microdroplets, we achieved multielectron CO2 reduction and C-C coupling to synthesize ethanol using molecular catalysts. These catalysts effectively harness and relay electrons, enhancing the longevity of solvated electrons and enabling multielectron reactions. Importantly, we revealed the intrinsic relationship between the size and charge density of a MEC and its reaction selectivity. Employing in situ mass spectrometry, we identified reaction intermediates (molecular catalyst adducts with HCOO) and oxidation products, elucidating the CO2 reduction mechanism and the comprehensive reaction procedure. Our research underscores the promising role of charged microdroplets in pioneering new electrochemical systems.

12.
Chem Commun (Camb) ; 60(8): 980-983, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38165770

ABSTRACT

Charged microdroplets are favored in microfluidic control, biomedicine, chemistry and materials processing due to their unique physicochemical environment, including interface double layers, high electric fields, surface concentration enrichment, and more. Herein, we investigated the crystallization of charged sodium chloride microdroplets and achieved the formation of hollow single crystals in a single-step process lasting only a few seconds, without the use of templates. Additionally, we discussed the plausible crystal growth mechanism, which appears to be an unconventional outward-inward growth process.

13.
Chem Soc Rev ; 53(4): 1892-1914, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38230701

ABSTRACT

Molecular assembly is the process of organizing individual molecules into larger structures and complex systems. The self-assembly approach is predominantly utilized in creating artificial molecular assemblies, and was believed to be the primary mode of molecular assembly in living organisms as well. However, it has been shown that the assembly of many biological complexes is "catalysed" by other molecules, rather than relying solely on self-assembly. In this review, we summarize these catalysed-assembly (catassembly) phenomena in living organisms and systematically analyse their mechanisms. We then expand on these phenomena and discuss related concepts, including catalysed-disassembly and catalysed-reassembly. Catassembly proves to be an efficient and highly selective strategy for synergistically controlling and manipulating various noncovalent interactions, especially in hierarchical molecular assemblies. Overreliance on self-assembly may, to some extent, hinder the advancement of artificial molecular assembly with powerful features. Furthermore, inspired by the biological catassembly phenomena, we propose guidelines for designing artificial catassembly systems and developing characterization and theoretical methods, and review pioneering works along this new direction. Overall, this approach may broaden and deepen our understanding of molecular assembly, enabling the construction and control of intelligent assembly systems with advanced functionality.

14.
Plant Physiol ; 195(1): 785-798, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38159040

ABSTRACT

Rice (Oryza sativa) bacterial blight, caused by Xanthomonas oryzae pv. Oryzae (Xoo), threatens plant growth and yield. However, the molecular mechanisms underlying rice immunity against Xoo remain elusive. Here, we identified a NAC (NAM-ATAF-CUC) transcription factor OsNAC2 as a negative regulator in the resistance to bacterial blight disease in rice. Constitutive overexpression of OsNAC2 inhibited the expression of salicylic acid (SA) biosynthesis-related genes (i.e. isochorismate synthase 1 (OsICS1), phenylalanine ammonia lyase 3 (OsPAL3), etc.) with adverse impacts on the pathogenesis-related proteins (PRs) responses and compromised blight resistance. Moreover, OsNAC2 interacted with APETALA2/ethylene-responsive element binding protein (AP2/EREBP) transcription factor OsEREBP1 and possibly threatened its protein stability, destroying the favorable interaction of OsEREBP1-Xa21-binding protein OsXb22a in the cytoplasm during Xoo-induced infection. On the contrary, downregulation of OsNAC2 resulted in enhanced resistance to bacterial blight in rice without any growth or yield penalties. Our results demonstrated that OsNAC2 inhibits SA signaling and stably interacted with OsEREBP1 to impair disease resistance. This OsNAC2-OsEREBP1-based homeostatic mechanism provided insights into the competition between rice and bacterial pathogens, and it will be useful to improve the disease resistance of important crops through breeding.


Subject(s)
Disease Resistance , Gene Expression Regulation, Plant , Homeostasis , Oryza , Plant Diseases , Plant Proteins , Transcription Factors , Xanthomonas , Oryza/genetics , Oryza/microbiology , Oryza/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Xanthomonas/physiology , Xanthomonas/pathogenicity , Transcription Factors/metabolism , Transcription Factors/genetics , Disease Resistance/genetics , Plant Immunity/genetics , Salicylic Acid/metabolism
15.
Shanghai Kou Qiang Yi Xue ; 32(4): 401-404, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-38044735

ABSTRACT

PURPOSE: To evaluate the clinical effect of complete denture restoration in edentulous patients using secondary functional impression. METHODS: Complete denture restoration was performed in 433 edentulous patients using secondary functional impression. The Geriatric Oral Health Assessment Index (GOHAI) was used to evaluate patients' oral health-related quality of life before and after restoration. All patients were divided into 3 groups according to whether they had a history of denture restoration: no denture group(ND),removable partial denture group(RPD), complete denture group(CD). In CD group, 30 patients were asked to chew two-colour gum. The SDhue value was evaluated by using ViewGum software. SPSS 26.0 software package was used for data analysis. RESULTS: The oral health-related quality of life was improved in all the 3 groups after restoration, and the GOHAI index 1 month after restoration was significantly higher than that before restoration(P<0.05). In CD group, SDHue value of 30 patients after restoration was significantly lower than that before restoration(P<0.05). CONCLUSIONS: Secondary functional impression is simple and fast, and can improve the satisfaction of patients after complete denture restoration.


Subject(s)
Mouth, Edentulous , Oral Health , Humans , Aged , Quality of Life , Denture, Complete , Mastication , Patient Satisfaction
16.
J Phys Chem Lett ; 14(43): 9539-9547, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37856238

ABSTRACT

Stereoelectronic effects in single-molecule junctions have been widely utilized to achieve a molecular switch, but high-efficiency and reproducible switching remain challenging. Here, we demonstrate that there are three stable intramolecular conformations in the 9,10-diphenyl-9,10-methanoanthracen-11-one (DPMAO) systems due to steric effect. Interestingly, different electronic coupling approaches including weak coupling (through-space), decoupling, and strong coupling (through-bond) between two terminal benzene rings are accomplished in the three stable conformations, respectively. Theoretical calculations show that the molecular conductance of three stable conformations differs by more than 1 order of magnitude. Furthermore, the populations of the three stable conformations are highly dependent on the solvent effect and the external electric field. Therefore, an excellent molecular switch can be achieved using the DPMAO molecule junctions and external stimuli. Our findings reveal that modulating intramolecular electronic coupling approaches may be a useful manner to enable molecular switches with high switching ratios. This opens up a new route for building high-efficiency molecular switches in single-molecular junctions.

17.
J Am Chem Soc ; 145(32): 17795-17804, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37527407

ABSTRACT

The manipulation of chirality in molecular entities that rapidly interconvert between enantiomeric forms is challenging, particularly at the supramolecular level. Advances in controlling such dynamic stereochemical systems offer opportunities to understand chiral symmetry breaking and homochirality. Herein, we report the synthesis of a face-rotating tetrahedron (FRT), an organic molecular cage composed of tridurylborane facial units that undergo stereomutations between enantiomeric trefoil propeller-like conformations. After resolution, we show that the racemization barrier of the enantiopure FRT can be regulated in situ through the reversible binding of fluoride anions onto the tridurylborane moieties. Furthermore, the addition of an enantiopure phenylethanol to the FRT can effectively induce chirality of the molecular cage by preferentially binding to one of its enantiomeric conformers. This study presents a new paradigm for controlling dynamic chirality in supramolecular systems, which may have implications for asymmetric synthesis and dynamic stereochemistry.

18.
Anal Chem ; 95(35): 13346-13352, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37611317

ABSTRACT

Reagent purity is crucial to experimental research, considering that the ignorance of ultratrace impurities may induce wrong conclusions in either revealing the reaction nature or qualifying the target. Specifically, in the field of surface science, the strong interaction between the impurity and the surface will bring a non-negligible negative effect. Surface-enhanced Raman spectroscopy (SERS) is a highly surface-sensitive technique, providing fingerprint identification and near-single molecule sensitivity. In the SERS analysis of trace chloromethyl diethyl phosphate (DECMP), we figured out that the SERS performance of DECMP is significantly distorted by the trace impurities from DECMP. With the aid of gas chromatography-based techniques, one strongly interfering impurity (2,2-dichloro-N,N-dimethylacetamide), the byproduct during the synthesis of DECMP, was confirmed. Furthermore, the nonignorable interference of impurities on the SERS measurement of NaBr, NaI, or sulfadiazine was also observed. The generality ignited us to refresh and consolidate the guideline for the reliable SERS qualitative analysis, by which the potential misleading brought by ultratrace impurities, especially those strongly adsorbed on Au or Ag surfaces, could be well excluded.

19.
Angew Chem Int Ed Engl ; 62(45): e202307086, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37475578

ABSTRACT

Synthesis of formate from hydrogenation of carbon dioxide (CO2 ) is an atom-economic reaction but is confronted with challenges in developing high-performance non-precious metal catalysts for application of the process. Herein, we report a highly durable edge-rich molybdenum disulfide (MoS2 ) catalyst for CO2 hydrogenation to formate at 200 °C, which delivers a high selectivity of over 99 % with a superior turnover frequency of 780.7 h-1 surpassing those of previously reported non-precious metal catalysts. Multiple experimental characterization techniques combined with theoretical calculations reveal that sulfur vacancies at MoS2 edges are the active sites and the selective production of formate is enabled via a completely new water-mediated hydrogenation mechanism, in which surface OH* and H* species in dynamic equilibrium with water serve as moderate hydrogenating agents for CO2 with residual O* reduced by hydrogen. This study provides a new route for developing low-cost high-performance catalysts for CO2 hydrogenation to formate.

20.
Microb Pathog ; 182: 106257, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37460066

ABSTRACT

Toxoplasma gondii infection in clinical cases of rheumatic diseases is increasing, whereas, the relationship between T. gondii infection and rheumatic diseases is still ambiguous and contradictory. Thus, the present case-control study based on serological diagnosis was carried out to identify the underlying relationship between T. gondii infection and rheumatic diseases in China. Serological results showed that rheumatic patients (17.25%, 79/458) had a significantly higher T. gondii seroprevalence than control subjects (10.70%, 49/458) (p = 0.004). However, the difference in T. gondii seroprevalence among clinical rheumatic disease forms was insignificant. Moreover, disease duration not effect the T. gondii seroprevalence in the included clinical rheumatic patients. Three risk factors (presence of cats at home, blood transfusion history, and consumption of raw shellfish) were identified through multivariate analysis to affect the T. gondii seroprevalence in the included clinical rheumatic patients. In conclusion, these results indicate that the latent T. gondii infection in clinical rheumatic patients should cause alarm and attention in the course of future scientific research or clinical treatment.


Subject(s)
Rheumatic Diseases , Toxoplasma , Toxoplasmosis , Humans , Case-Control Studies , Seroepidemiologic Studies , Antibodies, Protozoan , Toxoplasmosis/diagnosis , Toxoplasmosis/epidemiology , Risk Factors , Rheumatic Diseases/complications , Rheumatic Diseases/epidemiology , China/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...