Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 367
Filter
1.
Analyst ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752735

ABSTRACT

We prepared novel green, eco-friendly carbon dots as a dual-channel probe for highly sensitive and selective detection of tartrazine (Trz) and palladium(II) (Pd(II)) involving, respectively, FRET and electron transfer mechanisms. Furthermore, the successful utilization of the carbon dots for detecting Trz and Pd(II) in actual samples implies its potential application prospects in analysis.

2.
Int Immunopharmacol ; 135: 112303, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38776855

ABSTRACT

Diabetic nephropathy (DN) is a common complication of diabetes, characterized by renal fibrosis and poor patient prognosis. Hederagenin (HDG) has shown promising improvement in chronic kidney disease (CKD) kidney fibrosis, but its mechanism in DN-induced kidney fibrosis remains unclear. In this study, a model of diabetic nephropathy (DN) in mice was induced by intraperitoneal injection of streptozocin (50 mg/kg), while in vitro, high glucose (25 mM) was used to induce HK2 cell damage, simulating tubular injury in DN kidneys. The improvement of HDG treatment intervention was evaluated by observing changes in renal function, pathological structural damage, and the expression of fibrosis-related proteins in renal tubular cells. The results demonstrate that HDG intervention alleviates renal dysfunction and pathological damage in DN mice, accompanied by reduced expression of fibrotic markers α-smooth muscle actin (α-SMA), fibronectin (FN) and Collagen-I. Mechanistically, this study found that HDG can inhibit ferroptosis and fibrosis induced by the ferroptosis inducer Erastin (1 µM) in renal tubular cells. Phosphorylation of Smad3 promotes ferroptosis in renal tubular cells. After using its specific inhibitor SIS3 (4 µM), the expression of downstream target protein NADPH oxidase 4 (NOX4) significantly decreases, while the level of glutathione peroxidase 4 (GPX4) is notably restored, mitigating ferroptosis. Smad3 overexpression attenuates the therapeutic effect of HDG on tubular cell fibrosis induced by high glucose. These results demonstrate HDG inhibits Smad3 phosphorylation, thereby reducing the expression of NOX4 and enhancing the expression of GPX4, ultimately attenuating ferroptosis induced renal fibrosis. These findings suggest that HDG offer therapeutic potential for DN renal fibrosis by targeting Smad3-mediated ferroptosis in renal tubular cells.

3.
Nano Lett ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781416

ABSTRACT

Extracting interior photoinduced species to the surface before their recombination is of great importance in pursuing high-efficiency semiconductor-based photocatalysis. Traditional strategies toward charge-carrier extraction, mostly relying on the construction of an electric field gradient, would be invalid toward the neutral-exciton counterpart in low-dimensional systems. In this work, by taking bismuth oxybromide (BiOBr) as an example, we manipulate interior exciton extraction to the surface by implementing iodine doping at the edges of BiOBr plates. Spatial- and time-resolved spectroscopic analyses verified the accumulation of excitons and charge carriers at the edges of iodine-doped BiOBr (BiOBr-I) plates. This phenomenon could be associated with interior exciton extraction, driven by an energy-level gradient between interior and edge exciton states, and the following exciton dissociation processes. As such, BiOBr-I shows remarkable performance in photocatalytic C-H fluorination, mediated by both energy- and charge-transfer processes. This work uncovers the importance of spatial regulation of excitonic properties in low-dimensional semiconductor-based photocatalysis.

4.
Science ; 384(6695): 579-584, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38696580

ABSTRACT

Fractional quantum Hall (FQH) states are known for their robust topological order and possess properties that are appealing for applications in fault-tolerant quantum computing. An engineered quantum platform would provide opportunities to operate FQH states without an external magnetic field and enhance local and coherent manipulation of these exotic states. We demonstrate a lattice version of photon FQH states using a programmable on-chip platform based on photon blockade and engineering gauge fields on a two-dimensional circuit quantum electrodynamics system. We observe the effective photon Lorentz force and butterfly spectrum in the artificial gauge field, a prerequisite for FQH states. After adiabatic assembly of Laughlin FQH wave function of 1/2 filling factor from localized photons, we observe strong density correlation and chiral topological flow among the FQH photons. We then verify the unique features of FQH states in response to external fields, including the incompressibility of generating quasiparticles and the smoking-gun signature of fractional quantum Hall conductivity. Our work illustrates a route to the creation and manipulation of novel strongly correlated topological quantum matter composed of photons and opens up possibilities for fault-tolerant quantum information devices.

5.
Phytomedicine ; 129: 155669, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38696923

ABSTRACT

BACKGROUND: Depression is a mental illness characterized by persistent sadness and a reduced capacity for pleasure. In clinical practice, SSRIs and other medications are commonly used for therapy, despite their various side effects. Natural products present distinct advantages, including synergistic interactions among multiple components and targeting multiple pathways, suggesting their tremendous potential in depression treatment. Imbalance in mitochondrial quality control (MQC) plays a significant role in the pathology of depression, emphasizing the importance of regulating MQC as a potential intervention strategy in addressing the onset and progression of depression. However, the role and mechanism through which natural products regulate MQC in depression treatments still need to be comprehensively elucidated, particularly in clinical and preclinical settings. PURPOSE: This review was aimed to summarize the findings of recent studies and outline the pharmacological mechanisms by which natural products modulate MQC to exert antidepressant effects. Additionally, it evaluated current research limitations and proposed new strategies for future preclinical and clinical applications in the depression domain. METHODS: To study the main pharmacological mechanisms underlying the regulation of MQC by natural products in the treatment of depression, we conducted a thorough search across databases such as PubMed, Web of Science, and ScienceDirect databases to classify and summarize the relationship between MQC and depression, as well as the regulatory mechanisms of natural products. RESULTS: Numerous studies have shown that irregularities in the MQC system play an important role in the pathology of depression, and the regulation of the MQC system is involved in antidepressant treatments. Natural products mainly regulate the MQC system to induce antidepressant effects by alleviating oxidative stress, balancing ATP levels, promoting mitophagy, maintaining calcium homeostasis, optimizing mitochondrial dynamics, regulating mitochondrial membrane potential, and enhancing mitochondrial biogenesis. CONCLUSIONS: We comprehensively summarized the regulation of natural products on the MQC system in antidepressants, providing a unique perspective for the application of natural products within antidepressant therapy. However, extensive efforts are imperative in clinical and preclinical investigations to delve deeper into the mechanisms underlying how antidepressant medications impact MQC, which is crucial for the development of effective antidepressant treatments.

6.
ChemSusChem ; : e202400598, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697954

ABSTRACT

It has been known that plastics with undegradability and long half-times have caused serious environmental and ecological issues. Considering the devastating effects, the development of efficient plastic upcycling technologies with low energy consumption is absolutely imperative. Catalytic hydrogenolysis of single-use polyethylene over Ru-based catalysts to produce high-quality liquid fuel has been one of the current top priority strategies, but it is restricted by some tough challenges, such as the tendency towards methanation resulting from terminal C-C cleavage. Herein, we introduced Ru nanoparticles supported on hollow ZSM-5 zeolite (Ru/H-ZSM-5) for hydrocracking of high-density polyethylene (HDPE) under mild reaction conditions. The implication of experimental results is that the 1Ru/H-ZSM-5 (~1wt% Ru) acted as an effective and reusable bifunctional catalyst providing higher conversion rate (84.30%) and liquid fuel (C5-C21) yield (62.77%). Detailed characterization demonstrated that the optimal performance in hydrocracking of PE could be attributed to the moderate acidity and appropriate positively charged Ru species resulting from the metal-zeolite interaction. This work proposes a promising catalyst for plastic upcycling and reveals its structure-performance relationship, which has guiding significance for catalyst design to improve the yield of high-value liquid fuels.

7.
Sci Rep ; 14(1): 10106, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38697999

ABSTRACT

Previous studies have shown that a higher intensity of physical activity (PA) is associated with a lower risk of cognitive impairment (CI), whereas hypertension is associated with higher CI. However, there are few studies on the association between PA intensity and cognitive function in hypertensive patients. This study investigated the association between PA intensity and cognitive function in hypertensive patients. A total of 2035 hypertensive patients were included in this study, including 407 hypertensive patients with CI and 1628 hypertensive patients with normal cognitive function matched 1:4 by age and sex. The International Physical Activity Questionnaire-Long Form and the Mini-mental State Examination were used to evaluate PA intensity, total metabolic equivalents, and cognitive function in patients with hypertension. Multivariate logistic regression was used to analyze the correlation between PA intensity and CI in hypertensive patients. The Spearman correlation coefficient was used to analyze the correlation between PA intensity and the total score of each component of the MMSE and the correlation between PA total metabolic equivalents and cardiac structure in hypertensive patients. After adjusting for all confounding factors, PA intensity was negatively associated with CI in hypertensive patients (OR = 0.608, 95% CI: 0.447-0.776, P < 0.001), and this association was also observed in hypertensive patients with education level of primary school and below and junior high school and above (OR = 0.732, 95% CI: 0.539-0.995, P = 0.047; OR = 0.412, 95% CI: 0.272-0.626, P < 0.001). The intensity of PA in hypertensive patients was positively correlated with orientation (r = 0.125, P < 0.001), memory (r = 0.052, P = 0.020), attention and numeracy (r = 0.151, P < 0.001), recall ability (r = 0.110, P < 0.001), and language ability (r = 0.144, P < 0.001). PA total metabolic equivalents in hypertensive patients were negatively correlated with RVEDD and LAD (r = - 0.048, P = 0.030; r = - 0.051, P = 0.020) and uncorrelated with LVEDD (r = 0.026, P = 0.233). Higher PA intensity reduced the incidence of CI in hypertensive patients. Therefore, hypertensive patients were advised to moderate their PA according to their circumstances.


Subject(s)
Cognition , Cognitive Dysfunction , Exercise , Hypertension , Humans , Hypertension/physiopathology , Male , Female , Exercise/physiology , Middle Aged , Case-Control Studies , Cognition/physiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Aged , Surveys and Questionnaires , Adult
8.
Chem Asian J ; : e202400255, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600033

ABSTRACT

N,N,P-Pincer nickel complexes effectively catalyze reaction of alcohols with benzylphosphine oxides to form alkenes in good yields. The protocol suits for a wide scope of substrates and generates only E-configurated alkenes. The method also shows good compatibility of functional groups. Methoxy, methylthio, trifluoromethyl, ketal, fluoro, chloro, bromo, thienyl, and furyl groups are tolerated. The mechanism studies support that the reaction proceeds through catalytic dehydrogenation of alcohols to aldehydes or ketones followed by condensation with benzyldiphenylphosphine oxides in the presence of KOtBu.

9.
Anal Chem ; 96(18): 7172-7178, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38650072

ABSTRACT

Achieving sensitive detection and accurate identification of cancer cells is vital for diagnosing and treating the disease. Here, we developed a logic signal amplification system using DNA tetrahedron-mediated three-dimensional (3D) DNA nanonetworks for sensitive electrochemiluminescence (ECL) detection and subtype identification of cancer cells. Specially designed hairpins were integrated into DNA tetrahedral nanostructures (DTNs) to perform a catalytic hairpin assembly (CHA) reaction in the presence of target microRNA, forming hyperbranched 3D nanonetworks. Benefiting from the "spatial confinement effect," the DNA tetrahedron-mediated catalytic hairpin assembly (DTCHA) reaction displayed significantly faster kinetics and greater cycle conversion efficiency than traditional CHA. The resulting 3D nanonetworks could load a large amount of Ru(phen)32+, significantly enhancing its ECL signal, and exhibit detection limits for both miR-21 and miR-141 at the femtomolar level. The biosensor based on modular logic gates facilitated the distinction and quantification of cancer cells and normal cells based on miR-21 levels, combined with miR-141 levels, to further identify different subtypes of breast cancer cells. Overall, this study provides potential applications in miRNA-related clinical diagnostics.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Luminescent Measurements , MicroRNAs , Humans , MicroRNAs/analysis , Electrochemical Techniques/methods , Biosensing Techniques/methods , DNA/chemistry , Nanostructures/chemistry , Limit of Detection , Cell Line, Tumor , Breast Neoplasms/diagnosis , MCF-7 Cells
10.
J Org Chem ; 89(8): 5764-5777, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38578982

ABSTRACT

The Rh(III)-catalyzed reaction of aromatic ketoximes with 2-vinylaziridines affords ortho-allylation products of the phenyl rings of aromatic ketoximes in moderate to excellent yields. The reaction requires 0.5 equiv of NaOAc as a base and occurs under mild conditions. The protocol exhibits ortho-monoallylation selectivity, wide scope of substrates, and good compatibility of functional groups.

11.
J Am Chem Soc ; 146(11): 7467-7479, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38446421

ABSTRACT

Interfacial interaction dictates the overall catalytic performance and catalytic behavior rules of the composite catalyst. However, understanding of interfacial active sites at the microscopic scale is still limited. Importantly, identifying the dynamic action mechanism of the "real" active site at the interface necessitates nanoscale, high spatial-time-resolved complementary-operando techniques. In this work, a Co3O4 homojunction with a well-defined interface effect is developed as a model system to explore the spatial-correlation dynamic response of the interface toward oxygen evolution reaction. Quasi in situ scanning transmission electron microscopy-electron energy-loss spectroscopy with high spatial resolution visually confirms the size characteristics of the interface effect in the spatial dimension, showing that the activation of active sites originates from strong interfacial electron interactions at a scale of 3 nm. Multiple time-resolved operando spectroscopy techniques explicitly capture dynamic changes in the adsorption behavior for key reaction intermediates. Combined with density functional theory calculations, we reveal that the dynamic adjustment of multiple adsorption configurations of intermediates by highly activated active sites at the interface facilitates the O-O coupling and *OOH deprotonation processes. The dual dynamic regulation mechanism accelerates the kinetics of oxygen evolution and serves as a pivotal factor in promoting the oxygen evolution activity of the composite structure. The resulting composite catalyst (Co-B@Co3O4/Co3O4 NSs) exhibits an approximately 70-fold turnover frequency and 20-fold mass activity than the monomer structure (Co3O4 NSs) and leads to significant activity (η10 ∼257 mV). The visual complementary analysis of multimodal operando/in situ techniques provides us with a powerful platform to advance our fundamental understanding of interfacial structure-activity relationships in composite structured catalysts.

12.
Life Sci ; 345: 122577, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38521387

ABSTRACT

BACKGROUND: Central hypothyroidism (CH) is characterized by low T4 levels and reduced levels or bioactivity of circulating TSH. However, there is a lack of studies on CH-related intestinal maldevelopment. In particular, the roles of TH and TSH/TSHR signaling in CH-related intestinal maldevelopment are poorly understood. Herein, we utilized Tshr-/- mice as a congenital hypothyroidism model with TH deprival and absence of TSHR signaling. METHODS: The morphological characteristics of intestines were determined by HE staining, periodic acid-shiff staining, and immunohistochemical staining. T4 was administrated into the offspring of homozygous mice from the fourth postnatal day through weaning or administrated after weaning. RT-PCR was used to evaluate the expression of markers of goblet cells and intestinal digestive enzymes. Single-cell RNA-sequencing analysis was used to explore the cell types and gene profiles of metabolic alternations in early-T4-injected Tshr-/- mice. KEY FINDINGS: Tshr deletion caused significant growth retardation and intestinal maldevelopment, manifested as smaller and more slender small intestines due to reduced numbers of stem cells and differentiated epithelial cells. Thyroxin supplementation from the fourth postnatal day, but not from weaning, significantly rescued the abnormal intestinal structure and restored the decreased number of proliferating intestinal cells in crypts of Tshr-/- mice. Tshr-/- mice with early-life T4 injections had more early goblet cells and impaired metabolism compared to Tshr+/+ mice. SIGNIFICANCE: TH deprival leads to major defects of CH-associated intestinal dysplasia while TSH/TSHR signaling deficiency promotes the differentiation of goblet cells and impairs nutrition metabolism.


Subject(s)
Hypothyroidism , Thyroid Hormones , Thyrotropin , Animals , Mice , Hypothyroidism/complications , Hypothyroidism/metabolism , Receptors, G-Protein-Coupled , Receptors, Thyrotropin/genetics , Receptors, Thyrotropin/metabolism , Signal Transduction , Thyroid Hormones/metabolism , Intestines/pathology
13.
PLoS One ; 19(2): e0298324, 2024.
Article in English | MEDLINE | ID: mdl-38363761

ABSTRACT

BACKGROUND: Few studies on molecular epidemiology have studied people with newly diagnosed HIV infection and ART Failure Patients at the same time in rural China. With more serious HIV epidemic than in other provinces in China, Sichuan is an area suitable for this study. OBJECTIVE: To analyze the characteristics of HIV-1 molecular networks and factors related to network entry among newly diagnosed HIV infection and ART Failure Patients in three county-level cities (A, B, C) in Sichuan Province, to provide scientific basis for accurate prevention and control. METHODS: Nested PCR amplification method was used to amplify HIV-1 pol gene region of 530 blood samples, Sequencer 4.9 was used to edit, clean and splice the gene sequence, Bioedit correction, Fastree 2.1.8 and Figtree 1.4.2 to construct evolutionary tree and determine genotype. HyPhy2.2.4 and Cytoscape 3.6.1 software were used to construct molecular network. Logistic regression analysis was applied. RESULTS: 523(98.68%) pol sequences were obtained, and a total of 518 valid sequences with basic information came into the final analyses. A total of 6 genotypes were detected, namely CRF01_AE (320,61.78%), CRF07_BC (149,28.76%), B (30,5.79%), CRF08_BC (11, 2.12%), CRF55_01B (6, 1.16%) and C (2, 0.39%). 186 of 518(35.91%) sequences entered the network at a genetic distance of 0.8%, forming 42 propagation clusters. "High-risk transmitters"(connected with two and more) accounted for 21.62%. Logistic regression showed that≥50 years old (OR = 2.474) were more risky than 18-49 years old, CRF07_BC sub-type (OR = 0.174) were less risky than CRF01_AE sub-type, B sub-type (OR = 6.698) is higher risky than CRF01_AE sub-type, and District B (OR = 0.077) less risky than that of A city. CONCLUSION: The sources of HIV infection in rural Sichuan are diversified and complicated. The prevention and control of HIV infection in Sichuan Province should focus on strengthening the long-term dynamic detection of elderly population, B strain sub-type, and in City A.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , Aged , Middle Aged , Adolescent , Young Adult , Adult , HIV Infections/epidemiology , HIV Infections/diagnosis , Phylogeny , HIV-1/genetics , Polymerase Chain Reaction , Genotype , China/epidemiology
14.
Analyst ; 149(4): 1212-1220, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38214602

ABSTRACT

A fluorometric method based on boron, bromide-codoped carbon dots (BBCNs) was developed for the first time for the highly selective detection of p-nitroaniline (PNA) in wastewater samples. It should be noted that the introduction of bromine greatly increases the molecular polarizability of the probe, which can regulate the energy level matching between the probe and PNA, resulting in the interaction between BBCNs and PNA. In the presence of PNA, the fluorescence of BBCNs is obviously quenched and accompanied by a red shift of the fluorescence band, which might be attributed to the formation of aggregates caused by the polar adsorption of BBCNs and PNA. It is beneficial for constructing a highly selective sensing platform for PNA determination compared to its isomers (o-nitroaniline and m-nitroaniline) through atomic bromine-mediated polarization of the BBCNs. With the help of this mechanism, an excellent linear range of 0.5-300 µM with a low detection limit of 0.24 µM toward PNA was obtained. This work further confirms that there is a significant relationship between the nature of doping elements and the optical and physicochemical properties of fluorescent materials.

15.
Support Care Cancer ; 32(2): 128, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38261108

ABSTRACT

PURPOSE: To describe the health information-seeking experience and its influencing factors of people with head and neck neoplasms undergoing treatment. METHODS: This was a descriptive phenomenology study. Participants were recruited by purposive sampling. The semistructured interviews and all observation results were recorded. The data were analysed using Colaizzi's method. RESULTS: Fourteen participants were selected. We identified four themes that illustrate factors that influence the health information-seeking behaviour of participants: patients' awareness of health information needs, patients' competence, doctor-patient communication, and online advertising interference. We also determined the value of different types of information and patients' information needs and sources. CONCLUSION: These findings can help professionals understand patients' behaviours and think about how to deliver practical information support in a network environment to guide patients in continuous information seeking while taking specific factors into account.


Subject(s)
Head and Neck Neoplasms , Information Seeking Behavior , Humans , Head and Neck Neoplasms/therapy , Qualitative Research , Health Behavior , Physician-Patient Relations
16.
ACS Sens ; 9(1): 344-350, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38198738

ABSTRACT

DNA nanostructure provides powerful tools for DNA demethylase activity detection, but its stability has been significantly challenged. By virtue of circular DNA with resistance to exonuclease degradation, herein, the circular DNAzyme duplex with artificial methylated modification was constructed to identify the target and output the DNA activators to drive the CRISPR/Cas12a, constructing an "on-off-on" electrochemiluminescence (ECL) biosensor for monitoring the activity of the O6-methylguanine-DNA methyltransferase (MGMT). Specifically, the circular DNAzyme duplex consisted of the chimeric RNA-DNA substrate ring with double activator sequences and two single-stranded DNAzymes, whose catalytic domains were premodified with the methyl groups. When the MGMT was present, the methylated DNAzymes were repaired and restored the catalytic activity to cleave the chimeric RNA-DNA substrates, followed by the output of DNA activators to initiate the CRISPR/Cas12a. Subsequently, the ECL signals of silver nanoparticle-modified SnO2 nanospheres (Ag@SnO2) were recovered by releasing the ferrocene-labeled quenching probes (Fc-DNA) from the electrode surface because of the trans-cleavage activity of CRISPR/Cas12a, thus achieving the specific and sensitive ECL detection of MGMT from 2.5 × 10-4 to 2.5 × 102 ng/mL with a low limit (9.69 × 10-5 ng/mL). This strategy affords novel ideas and insights into research on how to project stable nucleic acid probes to detect DNA demethylases beyond traditional methods.


Subject(s)
DNA, Catalytic , Metal Nanoparticles , DNA, Catalytic/chemistry , CRISPR-Cas Systems , Metal Nanoparticles/chemistry , Silver , DNA/chemistry , RNA
17.
BMC Public Health ; 23(1): 2431, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38057774

ABSTRACT

BACKGROUND: Hypertensive patients are likelier to have cognitive function decline (CFD). This study aimed to explore physical activity level, sleep disorders, and type of work that influenced intervention effects on cognitive function decline in hypertensive patients and to establish a decision tree model to analyze their predictive significance on the incidence of CFD in hypertensive patients. METHODS: This cross-sectional study recruited patients with essential hypertension from several hospitals in Shandong Province from May 2022 to December 2022. Subject exclusion criteria included individuals diagnosed with congestive heart failure, valvular heart disease, cardiac surgery, hepatic and renal dysfunction, and malignancy. Recruitment is through multiple channels such as hospital medical and surgical outpatient clinics, wards, and health examination centers. Cognitive function was assessed using the Mini-Mental State Examination (MMSE), and sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI). Moreover, we obtained information on the patients' type of work through a questionnaire and their level of physical activity through the International Physical Activity Questionnaire (IPAQ). RESULTS: The logistic regression analysis results indicate that sleep disorder is a significant risk factor for CFD in hypertension patients(OR:1.85, 95%CI:[1.16,2.94]), mental workers(OR:0.12, 95%CI: [0.04,0.37]) and those who perform both manual and mental workers(OR: 0.5, 95%CI: [0.29,0.86]) exhibit protective effects against CFD. Compared to low-intensity, moderate physical activity(OR: 0.53, 95%CI: [0.32,0.87]) and high-intensity physical activity(OR: 0.26, 95%CI: [0.12,0.58]) protects against CFD in hypertension patients. The importance of predictors in the decision tree model was ranked as follows: physical activity level (54%), type of work (27%), and sleep disorders (19%). The area under the ROC curves the decision tree model predicted was 0.72 [95% CI: 0.68 to 0.76]. CONCLUSION: Moderate and high-intensity physical activity may reduce the risk of developing CFD in hypertensive patients. Sleep disorders is a risk factor for CFD in hypertensive patients. Hypertensive patients who engage in mental work and high-intensity physical activity effectively mitigate the onset of CFD in hypertensive patients.


Subject(s)
Exercise , Hypertension , Sleep Wake Disorders , Humans , Cognition , Cross-Sectional Studies , Hypertension/epidemiology , Sleep , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/prevention & control
18.
Front Pharmacol ; 14: 1307746, 2023.
Article in English | MEDLINE | ID: mdl-38152691

ABSTRACT

Depression is characterized by prominent indicators and manifestations, such as anhedonia, which refers to the inability to experience pleasure, and persistent feelings of hopelessness. In clinical practice, the primary treatment approach involves the utilization of selective serotonin reuptake inhibitors (SSRIs) and related pharmacological interventions. Nevertheless, it is crucial to recognize that these agents are associated with significant adverse effects. Traditional Chinese medicine (TCM) adopts a multifaceted approach, targeting diverse components, multiple targets, and various channels of action. TCM has potential antidepressant effects. Anomalies in adult hippocampal neurogenesis (AHN) constitute a pivotal factor in the pathology of depression, with the regulation of AHN emerging as a potential key measure to intervene in the pathogenesis and progression of this condition. This comprehensive review presented an overview of the pharmacological mechanisms underlying the antidepressant effects of active ingredients found in TCM. Through examination of recent studies, we explored how these ingredients modulated AHN. Furthermore, we critically assessed the current limitations of research in this domain and proposed novel strategies for preclinical investigation and clinical applications in the treatment of depression in future.

19.
Org Biomol Chem ; 21(48): 9524-9529, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37997680

ABSTRACT

An eco-friendly and metal-free method for the synthesis of tetrahydrodibenzo[b,g][1,8]naphthyridin-1(2H)-ones was established. Quinoline-derived dipolarophiles and cyclic enaminones as starting materials undergo a 1,4-Michael addition/SNAr tandem annulation reaction affording the target products. This approach features transition metal-free conditions, good functional group tolerance and operational simplicity.

20.
Life Sci ; 334: 122258, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37949209

ABSTRACT

AIMS AND OBJECTIVES: The aim of this study is to discuss the influence of endotoxin on insulin amyloid formation, to provide guidance for therapeutic insulin preparation and storage. MATERIALS AND METHODS: The ThT and ANS binding assays were applied to characterize the dynamics curve of insulin amyloid formation with the presence or absence of endotoxin. The morphological structures of intermediate and mature insulin fibrils were observed with SEM and TEM. Secondary structural changes of insulin during fibriliation were examined with CD, FTIR and Raman spectral analysis. The cytotoxic effects of oligomeric and amyloidogenic insulin aggregates were detected using a cck-8 cell viability assay kit. The influence of endotoxin on insulin efficacy was analyzed by monitoring the activation of insulin signal transduction. KEY FINDINGS: ThT analysis showed that endotoxin, regardless of species, accelerated insulin fibrils formation in a dose-dependent manner, as observed with a shorter lag phase. ANS binding assay demonstrated endotoxin provoked the exposure of insulin hydrophobic patches. The results of SEM and TEM data displayed that endotoxin drove insulin to cluster into dense and viscous form, with thicker and stronger filaments. Based on CD, FTIR and Raman spectra, endotoxin promoted the transition of α-helix to random coil and ß-strand secondary structures during insulin aggregation. Insulins in both oligomeric and amyloidogenic forms were cytotoxic to HepG2 cells, with the former being more severe. Finally, the efficacy of endotoxin treated insulin obviously decreased. SIGNIFICANCE: Our studies revealed that endotoxin disrupts the structural integrity of insulin and promotes its amyloidosis. These findings offered theoretical guidance for insulin storage and safe utilization, as well as pointing up a new direction for insulin resistance research.


Subject(s)
Amyloidosis , Insulin , Humans , Amyloid/chemistry , Amyloidosis/metabolism , Insulin/metabolism , Protein Structure, Secondary , Signal Transduction , Endotoxins
SELECTION OF CITATIONS
SEARCH DETAIL
...