Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res ; 74: 103283, 2024 02.
Article in English | MEDLINE | ID: mdl-38103335

ABSTRACT

Diphtheria toxin A (DTA) is an exotoxin secreted by Corynebacterium diphtheriae. After entering the cell through receptor-mediated manner, DTA can trigger the programmed cell death mechanism and lead to cell death. In 2001, Michiko Saito established a Diphtheria toxin receptor-mediated cell knockout system, which can conditional deplete specific cell type in transgenic mice. This system is not only very useful in the pathogenesis study of human diseases, but also has a wide application prospect in the study of organ development and regeneration. In 2008, David Voehringer described a newly generated mouse strain that encodes DTA under control of a loxP-flanked stop cassette in the ubiquitously expressed ROSA26 locus. Thereby, it can be used in combination with tissue-specific and/or inducible Cre-expressing mouse strains to achieve toxin-mediated cell ablation in vivo. The application of DTA-mediated cell knockout system in mice has been widely reported, but it has rarely been used in human cells. Accordingly, we generated a human embryonic stem cell line (SMUDHe010-A-1B) carrying inducible DTA expression cassette (loxp-stop-loxp-DTA, LSL-DTA) using CRISPR/Cas9-mediated homologous recombination. The cell line preserves normal karyotype, pluripotency and the ability to differentiate into all three germ layers. Moreover, the cell line can be used to prepare human organoid, which may provide a model for achieving conditional cell ablation in human tissues and organs.


Subject(s)
Diphtheria Toxin , Human Embryonic Stem Cells , Mice , Humans , Animals , Diphtheria Toxin/genetics , Diphtheria Toxin/metabolism , CRISPR-Cas Systems/genetics , Human Embryonic Stem Cells/metabolism , Integrases/metabolism , Mice, Transgenic , Homologous Recombination , Cell Line
2.
Cell Death Dis ; 14(6): 354, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296095

ABSTRACT

Keratinocyte hyperproliferation is a key pathogenic factor in psoriasis. However, the mechanisms that regulate keratinocyte hyperproliferation in this condition remain unclear. Here, we found that SLC35E1 was highly expressed in keratinocytes of patients with psoriasis and that Slc35e1-/- mice displayed a less severe imiquimod (IMQ)-induced psoriasis-like phenotype than their wild-type siblings. In addition, SLC35E1 deficiency inhibited keratinocyte proliferation in both mice and cultured cells. On a molecular level, SLC35E1 was found to regulate zinc ion concentrations and subcellular localization, while zinc ion chelation reversed the IMQ-induced psoriatic phenotype in Slc35e1-/- mice. Meanwhile, epidermal zinc ion levels were decreased in patients with psoriasis and zinc ion supplementation alleviated the psoriatic phenotype in an IMQ-induced mouse model of psoriasis. Our results indicated that SLC35E1 can promote keratinocyte proliferation by regulating zinc ion homeostasis and zinc ion supplementation has potential as a therapy for psoriasis.


Subject(s)
Psoriasis , Animals , Mice , Cell Proliferation , Disease Models, Animal , Homeostasis , Imiquimod/adverse effects , Keratinocytes/pathology , Mice, Inbred BALB C , Nucleotide Transport Proteins/metabolism , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/genetics
3.
J Dermatol Sci ; 110(2): 53-60, 2023 May.
Article in English | MEDLINE | ID: mdl-37100691

ABSTRACT

BACKGROUND: Primary localized cutaneous amyloidosis (PLCA) is a chronic skin disease characterized by aberrant keratinocyte differentiation, epidermal hyperproliferation, and amyloid deposits. Previously, we demonstrated OSMR loss-function mutants enhanced basal keratinocyte differentiation through the OSMR/STAT5/KLF7 signaling in PLCA patients. OBJECTIVE: To investigate the underlying mechanisms involved in basal keratinocyte proliferation in PLCA patients that remain unclear. METHODS: Patients with pathologically confirmed PLCA visiting the dermatologic outpatient clinic were involved in the study. Laser capture microdissection and mass spectrometry analysis, gene-edited mice, 3D human epidermis culture, flow cytometry, western blot, qRT-PCR and RNA sequencing were used to explore the underlying molecular mechanisms. RESULTS: In this study, we found that AHNAK peptide fragments were enriched in the lesions of PLCA patients, as detected by laser capture microdissection and mass spectrometry analysis. The upregulated expression of AHNAK was further confirmed using immunohistochemical staining. qRT-PCR and flow cytometry revealed that pre-treatment with OSM can inhibit AHNAK expression in HaCaT cells, NHEKs, and 3D human skin models, but OSMR knockout or OSMR mutations abolished this down-regulation trend. Similar results were obtained in wild-type and OSMR knockout mice. More importantly, EdU incorporation and FACS assays demonstrated the knockdown of AHNAK could induce G1 phase cell cycle arrest and inhibit keratinocyte proliferation. Furthermore, RNA sequencing revealed that AHNAK knockdown regulated keratinocyte differentiation. CONCLUSION: Taken together, these data indicated that the elevated expression of AHNAK by OSMR mutations led to hyperproliferation and overdifferentiation of keratinocytes, and the discovered mechanism might provide insights into potential therapeutic targets for PLCA.


Subject(s)
Amyloidosis, Familial , Skin Diseases, Genetic , Humans , Animals , Mice , Skin Diseases, Genetic/pathology , Skin/pathology , Amyloidosis, Familial/genetics , Keratinocytes/metabolism , Kruppel-Like Transcription Factors/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Oncostatin M/pharmacology , Oncostatin M Receptor beta Subunit/genetics
4.
Clin Genet ; 103(3): 301-309, 2023 03.
Article in English | MEDLINE | ID: mdl-36371786

ABSTRACT

Cystatin M/E (encoded by the CST6 gene) is a cysteine protease inhibitor, that exerts regulatory and protective effects against uncontrolled proteolysis mainly by directly regulating cathepsin V, cathepsin L, and legumain activities. Previous studies have suggested that CST6 may exert a regulatory role in epidermal differentiation and hair follicle formation by inhibiting the activity of respective cognate target proteases. However, until recently, studies have revealed that loss- or gain-of-function of the CST6 gene causes dry skin with hypotrichosis in humans. Here, we reported two siblings of Chinese origin with dry skin, desquamation and abnormal keratosis without hypotrichosis. By applying whole-exome sequencing, we identified homozygous loss-of-function mutation c.251G > A (p.Gly84Asp) in the CST6 gene as the underlying genetic cause. Further fluorimetric enzyme assays demonstrated the mutant cystatin M/E protein lost its inhibitory function on the protease activity of cathepsins. Moreover, the corresponding mutation in mice resulted in excessive cornification, desquamation, impaired skin barrier function, and abnormal proliferation and differentiation of keratinocytes. In conclusion, the homozygous missense mutation c.251G > A in CST6 gene resulted in dry skin, desquamation, as well as abnormal keratosis of the skin, promoting our understanding of the role of protease-antiprotease balance in human skin disorders.


Subject(s)
Hypotrichosis , Keratosis , Humans , Animals , Mice , Epidermis/metabolism , Cystatin M/genetics , Cystatin M/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Hypotrichosis/genetics , Mutation/genetics
5.
Stem Cell Res ; 63: 102842, 2022 08.
Article in English | MEDLINE | ID: mdl-35714449

ABSTRACT

Mutations in the tumor suppressor M receptor (OSMR) gene are associated with primary localized cutaneous amyloidosis (PLCA). Recently, we confirmed that OSMR loss-of-function mutations enhance epidermal keratinocyte differentiation via inactivation of the STAT5/KLF7 signaling. However, no disease model was available for PLCA. Accordingly, we generated an OSMR c.1538G > A mutant human embryonic stem cell line (SMUDHe010-A-82) using CRISPR/Cas9-mediated homologous recombination. The cell line preserves normal karyotype, pluripotency and the ability to differentiate into all three germ layers. Moreover, the cell line can be used to prepare human skin organoid, which may provide a disease model for PLCA.


Subject(s)
Human Embryonic Stem Cells , CRISPR-Cas Systems/genetics , Cell Line , Homologous Recombination , Homozygote , Human Embryonic Stem Cells/metabolism , Humans , Kruppel-Like Transcription Factors/genetics , Mutation/genetics , Oncostatin M Receptor beta Subunit/genetics , Oncostatin M Receptor beta Subunit/metabolism
6.
J Dermatol Sci ; 104(2): 95-103, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34674925

ABSTRACT

BACKGROUND: Oncostatin M (OSM), an interleukin-6 (IL-6) family proinflammatory cytokine, plays a critical role in inflammatory skin diseases, but its mechanism of action is not well understood. OBJECTIVE: To demonstrate the mechanism of OSM induced pyropotosis in normal human epidermal keratinocytes (NHEKs) and immortalized human keratinocytes (HaCaT cells). METHODS: NHEKs and HaCaT cells were treated with OSM. Knockout of OSM receptor (OSMR) with CRISPR/Cas9 system, knockdown of GSDME with small interfering RNA and primary keratinocytes from Osmr-/- and Gsdme-/- mice were used to study the effect of OSMR and GSDME. After treatment of OSM, NHEKs and HaCaT cells were irradiated with UVB. The mRNA was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and RNA sequencing, protein level was detected by Western Blotting, Elisa and immunofluorescence. Cell death was examined by lactate dehydrogenase (LDH) releasing. RESULTS: Here we found that OSM induced pyropotosis in NHEKs and HaCaT cells, but knockout of OSMR abolished pyropotosis. RNA sequencing revealed an upregulation of several key genes involved in NLRP3 inflammasome activation following OSM treatment, among which NLRP3, GSDME, and IL-1ß were confirmed by qRT-PCR and Western Blotting. Knockdown of GSDME alleviated OSM-induced pyropotosis. Pretreatment of OSM boosted UVB-induced pyroptosis and inflammation in NHEKs and HaCaT cells, and this priming function was lost in keratinocytes of Osmr-/- and Gsdme-/- mice. Similar results were obtained in a 3-dimensional culture of human epidermis. CONCLUSION: OSM functions as a priming cytokine to enhance UVB-induced inflammation in keratinocytes, providing insight into the pathogenesis of inflammatory skin diseases.


Subject(s)
Keratinocytes/radiation effects , Oncostatin M/pharmacology , Pore Forming Cytotoxic Proteins/metabolism , Pyroptosis/drug effects , Ultraviolet Rays , Animals , Epidermis/metabolism , Gene Knockout Techniques , HaCaT Cells , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oncostatin M Receptor beta Subunit/genetics , Pore Forming Cytotoxic Proteins/genetics , Pyroptosis/genetics , Pyroptosis/radiation effects , RNA, Small Interfering , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...