Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 509
Filter
2.
Heliyon ; 10(12): e32635, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975174

ABSTRACT

Intercultural competence has become one of the important goals of foreign language education. The potential and value of foreign language education on students' intercultural competence (IC) has been widely recognized by academia. Currently, most of the research on intercultural foreign language teachers in China focuses on university teachers, with little attention paid to primary school EFL teachers. However, the cultivation of IC is a staged and continuous process which cannot be achieved in one stroke. Therefore, it is necessary to include primary school EFL teachers in the study of IC cultivation. This paper presents data on Chinese primary school EFL teachers' beliefs about incorporating IC into foreign language teaching. Specifically, their understanding of culture, IC, and intercultural teaching practices are investigated through interviews. The interview transcriptions were analyzed using thematic analysis. The research found: 1. Chinese primary school EFL teachers generally hold an essentialist view of culture; 2. Teachers emphasize the attitudinal dimension of IC; however, they also exhibit a tendency to oversimplify IC or perceive it as a higher-order skill than language proficiency, hence deeming it unsuitable for cultivation at the primary school level; 3. Most cultural teaching practices are teacher-centered, focusing on background knowledge-style introduction. In general, teachers' intercultural teaching practices align with their cultural outlook. At last, the study explores two suggestions for promoting intercultural foreign language teaching: 1. Supporting primary school EFL teachers in updating their language and culture concepts system; 2. Encouraging teachers to reflect on their daily teaching practices as a major opportunity to promote the development of intercultural foreign language teaching.

3.
Nat Commun ; 15(1): 4901, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851779

ABSTRACT

Antimicrobial resistance remains a significant global threat, driving up mortality rates worldwide. Ribosomally synthesized and post-translationally modified peptides have emerged as a promising source of novel peptide antibiotics due to their diverse chemical structures. Here, we report the discovery of new aminovinyl-(methyl)cysteine (Avi(Me)Cys)-containing peptide antibiotics through a synergistic approach combining biosynthetic rule-based omics mining and heterologous expression. We first bioinformatically identify 1172 RiPP biosynthetic gene clusters (BGCs) responsible for Avi(Me)Cys-containing peptides formation from a vast pool of over 50,000 bacterial genomes. Subsequently, we successfully establish the connection between three identified BGCs and the biosynthesis of five peptide antibiotics via biosynthetic rule-guided metabolic analysis. Notably, we discover a class V lanthipeptide, massatide A, which displays excellent activity against gram-positive pathogens, including drug-resistant clinical isolates like linezolid-resistant S. aureus and methicillin-resistant S. aureus, with a minimum inhibitory concentration of 0.25 µg/mL. The remarkable performance of massatide A in an animal infection model, coupled with a relatively low risk of resistance and favorable safety profile, positions it as a promising candidate for antibiotic development. Our study highlights the potential of Avi(Me)Cys-containing peptides in expanding the arsenal of antibiotics against multi-drug-resistant bacteria, offering promising drug leads in the ongoing battle against infectious diseases.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Humans , Multigene Family , Mice , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/genetics , Antimicrobial Peptides/metabolism , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Drug Resistance, Bacterial/genetics , Drug Resistance, Bacterial/drug effects , Genome, Bacterial/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Computational Biology/methods , Cysteine/metabolism , Cysteine/chemistry
4.
Acad Radiol ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38902110

ABSTRACT

RATIONALE AND OBJECTIVES: To investigate the potential of T1-weighted imaging (T1WI)-based hippocampal radiomics as imaging markers for the diagnosis of Alzheimer's disease (AD) and their efficacy in discriminating between mild cognitive impairment (MCI) and dementia in AD. METHODS: A total of 126 AD patients underwent T1WI-based magnetic resonance imaging (MRI) examinations, along with 108 age-sex-matched healthy controls (HC). This was a retrospective, single-center study conducted from November 2021 to February 2023. AD patients were categorized into two groups based on disease progression and cognitive function: AD-MCI and dementia (AD-D). T1WI-based radiomics features of the bilateral hippocampi were extracted. To diagnose AD and differentiate between AD-MCI and AD-D, predictive models were developed using random forest (RF), logistic regression (LR), and support vector machine (SVM). We compared radiomics features between the AD and HC groups, as well as within the subgroups of AD-MCI and AD-D. Area under the curve (AUC), accuracy, sensitivity, and specificity were all used to assess model performance. Furthermore, correlations between radiomics features and Mini-Mental State Examination (MMSE) scores, tau protein phosphorylated at threonine 181 (P-tau-181), and amyloid ß peptide1-42 (Aß1-42) were analyzed. RESULTS: The RF model demonstrated superior performance in distinguishing AD from HC (AUC=0.961, accuracy=90.8%, sensitivity=90.7%, specificity=90.9%) and in identifying AD-MCI and AD-D (AUC=0.875, accuracy=80.7%, sensitivity=87.2%, specificity=73.2%) compared to the other models. Additionally, radiomics features were correlated with MMSE scores, P-tau-181, and Aß1-42 levels in AD. CONCLUSION: T1WI-based hippocampal radiomics features are valuable for diagnosing AD and identifying AD-MCI and AD-D.

5.
Int J Hematol ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730189

ABSTRACT

Pegylated recombinant human granulocyte colony-stimulating factor (PEG-rhG-CSF) has been introduced for the mobilization of peripheral blood stem cells (PBSCs). However, no cases of acute lung injury (ALI) in healthy donors have been reported, and the underlying mechanisms remain poorly understood. We first reported a case of ALI caused by PEG-rhG-CSF in a healthy Chinese donor, characterized by hemoptysis, hypoxemia, and patchy shadows. Ultimately, hormone administration, planned PBSC collection, leukocyte debridement, and planned PBSC collection resulted in active control of the donor's ALI. The donor's symptoms improved without any adverse effects, and the PBSC collection proceeded without incident. Over time, the lung lesion was gradually absorbed and eventually returned to normal. PEG-rhG-CSF may contribute to ALI in healthy donors via mechanisms involving neutrophil aggregation, adhesion, and the release of inflammatory mediators in the lung. This case report examines the clinical manifestations, treatment, and mechanism of lung injury induced by PEG-rhG-CSF-mobilized PBSCs.

6.
Front Microbiol ; 15: 1290985, 2024.
Article in English | MEDLINE | ID: mdl-38812686

ABSTRACT

Introduction: Allergic rhinitis (AR) is a respiratory immune system disorder characterized by dysregulation of immune responses. Within the context of AR, gut microbiota and its metabolites have been identified as contributors to immune modulation. These microorganisms intricately connect the respiratory and gut immune systems, forming what is commonly referred to as the gut-lung axis. Xiaoqinglong Decoction (XQLD), a traditional Chinese herbal remedy, is widely utilized in traditional Chinese medicine for the clinical treatment of AR. In this study, it is hypothesized that the restoration of symbiotic microbiota balance within the gut-lung axis plays a pivotal role in supporting the superior long-term efficacy of XQLD in AR therapy. Therefore, the primary objective of this research is to investigate the impact of XQLD on the composition and functionality of the gut microbiota in a murine model of AR. Methods: An ovalbumin-sensitized mouse model to simulate AR was utilized, the improvement of AR symptoms after medication was investigated, and high-throughput sequencing was employed to analyze the gut microbiota composition. Results: XQLD exhibited substantial therapeutic effects in AR mice, notably characterized by a significant reduction in allergic inflammatory responses, considerable alleviation of nasal symptoms, and the restoration of normal nasal function. Additionally, following XQLD treatment, the disrupted gut microbiota in AR mice displayed a tendency toward restoration, showing significant differences compared to the Western medicine (loratadine) group. Discussion: This results revealed that XQLD may enhance AR allergic inflammatory responses through the regulation of intestinal microbiota dysbiosis in mice, thus influencing the dynamics of the gut-lung axis. The proposal of this mechanism provides a foundation for future research in this area.

7.
Microbiome ; 12(1): 94, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790030

ABSTRACT

BACKGROUND: Microbial secondary metabolites play a crucial role in the intricate interactions within the natural environment. Among these metabolites, ribosomally synthesized and post-translationally modified peptides (RiPPs) are becoming a promising source of therapeutic agents due to their structural diversity and functional versatility. However, their biosynthetic capacity and ecological functions remain largely underexplored. RESULTS: Here, we aim to explore the biosynthetic profile of RiPPs and their potential roles in the interactions between microbes and viruses in the ocean, which encompasses a vast diversity of unique biomes that are rich in interactions and remains chemically underexplored. We first developed TrRiPP to identify RiPPs from ocean metagenomes, a deep learning method that detects RiPP precursors in a hallmark gene-independent manner to overcome the limitations of classic methods in processing highly fragmented metagenomic data. Applying this method to metagenomes from the global ocean microbiome, we uncover a diverse array of previously uncharacterized putative RiPP families with great novelty and diversity. Through correlation analysis based on metatranscriptomic data, we observed a high prevalence of antiphage defense-related and phage-related protein families that were co-expressed with RiPP families. Based on this putative association between RiPPs and phage infection, we constructed an Ocean Virus Database (OVD) and established a RiPP-involving host-phage interaction network through host prediction and co-expression analysis, revealing complex connectivities linking RiPP-encoding prokaryotes, RiPP families, viral protein families, and phages. These findings highlight the potential of RiPP families involved in prokaryote-phage interactions and coevolution, providing insights into their ecological functions in the ocean microbiome. CONCLUSIONS: This study provides a systematic investigation of the biosynthetic potential of RiPPs from the ocean microbiome at a global scale, shedding light on the essential insights into the ecological functions of RiPPs in prokaryote-phage interactions through the integration of deep learning approaches, metatranscriptomic data, and host-phage connectivity. This study serves as a valuable example of exploring the ecological functions of bacterial secondary metabolites, particularly their associations with unexplored microbial interactions. Video Abstract.


Subject(s)
Bacteria , Bacteriophages , Deep Learning , Metagenome , Metagenomics , Peptides , Ribosomes , Peptides/metabolism , Peptides/genetics , Bacteriophages/genetics , Metagenomics/methods , Ribosomes/metabolism , Ribosomes/genetics , Bacteria/genetics , Bacteria/metabolism , Bacteria/virology , Bacteria/classification , Microbiota/genetics , Protein Processing, Post-Translational , Seawater/microbiology , Seawater/virology , Oceans and Seas
8.
Heliyon ; 10(9): e30616, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38774083

ABSTRACT

Purpose: The objective of this study was to provide theoretically feasible strategies by understanding the relationship between the immune microenvironment and the diagnosis and prognosis of AML patients. To this end, we built a ceRNA network with lncRNAs as the core and analyzed the related lncRNAs in the immune microenvironment by bioinformatics analysis. Methods: AML transcriptome expression data and immune-related gene sets were obtained from TCGA and ImmPort. Utilizing Pearson correlation analysis, differentially expressed immune-related lncRNAs were identified. Then, the LASSO-Cox regression analysis was performed to generate a risk signature consisting immune-related lncRNAs. Accuracy of signature in predicting patient survival was evaluated using univariate and multivariate analysis. Next, GO and KEGG gene enrichment and ssGSEA were carried out for pathway enrichment analysis of 183 differentially expressed genes, followed by drug sensitivity and immune infiltration analysis with pRRophetic and CIBERSORT, respectively. Cytoscape was used to construct the ceRNA network for these lncRNAs. Results: 816 common lncRNAs were selected to acquire the components related to prognosis. The final risk signature established by multivariate Cox and stepwise regression analysis contained 12 lncRNAs engaged in tumor apoptotic and metastatic processes: LINC02595, HCP5, AC020934.2, AC008770.3, LINC01770, AC092718.4, AL589863.1, AC131097.4, AC012368.1, C1RL-AS1, STARD4-AS1, and AC243960.1. Based on this predictive model, high-risk patients exhibited lower overall survival rates than low-risk patients. Signature lncRNAs showed significant correlation with tumor-infiltrating immune cells. In addition, significant differences in PD-1/PD-L1 expression and bleomycin/paclitaxel sensitivity were observed between risk groups. Conclusion: LncRNAs related to immune microenvironment were prospective prognostic and therapeutic options for AML.

9.
Materials (Basel) ; 17(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38591628

ABSTRACT

Unsaturated polyester resin (UPR) with excellent flame retardant is mainly obtained by adding large amounts of flame retardants, usually at the expense of mechanical properties. In this work, a reactive flame retardant containing phosphorus and nitrogen (DOPO-N) was successfully synthesized and incorporated in UPR as a crosslinker. The mechanical and flame-retardant properties of UPR composites were enhanced. UPR/30DOPO-N passed a UL-94 V-1 rating with a limiting oxygen index (LOI) of 30.8%. The tensile strength of UPR/30DOPO-N increased by 24.4%. On this basis, a small amount of modified HNTs (VHNTs) was added to further improve the flame-retardant properties of the composite. With the introduction of 3 wt% VHNTs, the composite passed the UL-94 V-0 rating. The peak of heat release rate (PHRR) and total heat release (THR) of it decreased by 60.7% and 48.3%, respectively. Moreover, the detailed flame-retarding mechanism of DOPO-N and VHNTs was investigated by thermogravimetric infrared spectroscopy (TG-IR), Raman spectra, and X-ray photoelectron spectroscopy (XPS). It was found that DOPO-N played a role in quenching the flame in the gas phase and cooperated with VHNTs to enhance the barrier effect in the condensed phase.

10.
PLoS One ; 19(4): e0281698, 2024.
Article in English | MEDLINE | ID: mdl-38593173

ABSTRACT

Several genes involved in the pathogenesis have been identified, with the human leukocyte antigen (HLA) system playing an essential role. However, the relationship between HLA and a cluster of hematological diseases has received little attention in China. Blood samples (n = 123913) from 43568 patients and 80345 individuals without known pathology were genotyped for HLA class I and II using sequencing-based typing. We discovered that HLA-A*11:01, B*40:01, C*01:02, DQB1*03:01, and DRB1*09:01 were prevalent in China. Furthermore, three high-frequency alleles (DQB1*03:01, DQB1*06:02, and DRB1*15:01) were found to be hazardous in malignant hematologic diseases when compared to controls. In addition, for benign hematologic disorders, 7 high-frequency risk alleles (A*01:01, B*46:01, C*01:02, DQB1*03:03, DQB1*05:02, DRB1*09:01, and DRB1*14:54) and 8 high-frequency susceptible genotypes (A*11:01-A*11:01, B*46:01-B*58:01, B*46:01-B*46:01, C*01:02-C*03:04, DQB1*03:01-DQB1*05:02, DQB1*03:03-DQB1*06:01, DRB1*09:01-DRB1*15:01, and DRB1*14:54-DRB1*15:01) were observed. To summarize, our findings indicate the association between HLA alleles/genotypes and a variety of hematological disorders, which is critical for disease surveillance.


Subject(s)
Hematologic Diseases , Histocompatibility Antigens Class I , Humans , Gene Frequency , Alleles , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Genotype , Histocompatibility Antigens Class I/genetics , Hematologic Diseases/genetics , Haplotypes , Genetic Predisposition to Disease
11.
Sci Adv ; 10(14): eadk1031, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38569029

ABSTRACT

Pathologic Wnt/ß-catenin signaling drives various cancers, leading to multiple approaches to drug this pathway. Appropriate patient selection can maximize success of these interventions. Wnt ligand addiction is a druggable vulnerability in RNF43-mutant/RSPO-fusion cancers. However, pharmacologically targeting the biogenesis of Wnt ligands, e.g., with PORCN inhibitors, has shown mixed therapeutic responses, possibly due to tumor heterogeneity. Here, we show that the tumor suppressor FBXW7 is frequently mutated in RNF43-mutant/RSPO-fusion tumors, and FBXW7 mutations cause intrinsic resistance to anti-Wnt therapies. Mechanistically, FBXW7 inactivation stabilizes multiple oncoproteins including Cyclin E and MYC and antagonizes the cytostatic effect of Wnt inhibitors. Moreover, although FBXW7 mutations do not mitigate ß-catenin degradation upon Wnt inhibition, FBXW7-mutant RNF43-mutant/RSPO-fusion cancers instead lose dependence on ß-catenin signaling, accompanied by dedifferentiation and loss of lineage specificity. These FBXW7-mutant Wnt/ß-catenin-independent tumors are susceptible to multi-cyclin-dependent kinase inhibition. An in-depth understanding of primary resistance to anti-Wnt/ß-catenin therapies allows for more appropriate patient selection and use of alternative mechanism-based therapies.


Subject(s)
Neoplasms , beta Catenin , Humans , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Ubiquitin-Protein Ligases/metabolism , Neoplasms/genetics , Mutation , Cell Line, Tumor , Acyltransferases/genetics , Acyltransferases/metabolism , Membrane Proteins/metabolism
12.
Breast Cancer Res Treat ; 206(1): 45-56, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38616207

ABSTRACT

PURPOSE: The significance of postmastectomy radiotherapy (PMRT) in breast cancer patients who initially have clinically node-positive (cN +) status but achieve downstaging to ypN0 following neoadjuvant chemotherapy (NAC) remains uncertain. This study aims to assess the impact of PMRT in this patient subset. METHODS: Patients were enrolled from West China Hospital, Sichuan University from 2008 to 2019. Overall survival (OS), Locoregional recurrence-free survival (LRFS), distant metastasis-free survival (DMFS), and breast cancer-specific survival (BCSS) were estimated using the Kaplan-Meier method and assessed with the log-rank test. The impact of PMRT was further analyzed by the Cox proportional hazards model. Propensity score matching (PSM) was performed to reduce the selection bias. RESULTS: Of the 333 eligible patients, 189 (56.8%) received PMRT, and 144 (43.2%) did not. At a median follow-up period of 71 months, the five-year LRFS, DMFS, BCSS, and OS rates were 99.1%, 93.4%, 96.4%, and 94.3% for the entire cohort, respectively. Additionally, the 5-year LRFS, DMFS, BCSS, and OS rates were 98.9%, 93.8%, 96.7%, and 94.5% with PMRT and 99.2%, 91.3%, 94.9%, and 92.0% without PMRT, respectively (all p-values not statistically significant). After multivariate analysis, PMRT was not a significant risk factor for any of the endpoints. When further stratified by stage, PMRT did not show any survival benefit for patients with stage II-III diseases. CONCLUSION: In the context of comprehensive treatments, PMRT might be exempted in ypN0 breast cancer patients. Further large-scale, randomized controlled studies are required to investigate the significance of PMRT in this patient subset.


Subject(s)
Breast Neoplasms , Mastectomy , Neoadjuvant Therapy , Neoplasm Staging , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Breast Neoplasms/mortality , Breast Neoplasms/drug therapy , Breast Neoplasms/radiotherapy , Middle Aged , Neoadjuvant Therapy/methods , Adult , Aged , Retrospective Studies , Radiotherapy, Adjuvant/methods , Chemotherapy, Adjuvant/methods , Lymphatic Metastasis , Neoplasm Recurrence, Local/pathology
13.
J Drug Target ; 32(4): 393-403, 2024 04.
Article in English | MEDLINE | ID: mdl-38385350

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) is a significant complication of diabetes and the primary cause of blindness among working age adults globally. The development of DR is accompanied by oxidative stress, characterised by an overproduction of reactive oxygen species (ROS) and a compromised antioxidant system. Clinical interventions aimed at mitigating oxidative stress through ROS scavenging or elimination are currently available. Nevertheless, these treatments merely provide limited management over the advanced stage of the illness. Ferroptosis is a distinctive form of cell death induced by oxidative stress, which is characterised by irondependent phospholipid peroxidation. PURPOSE: This review aims to synthesise recent experimental evidence to examine the involvement of ferroptosis in the pathological processes of DR, as well as to explicate the regulatory pathways governing oxidative stress and ferroptosis in retina. METHODS: We systematically reviewed literature available up to 2023. RESULTS: This review included 12 studies investigating the involvement of ferroptosis in DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Ferroptosis , Humans , Reactive Oxygen Species/metabolism , Oxidative Stress/physiology , Antioxidants/metabolism
14.
J Hazard Mater ; 466: 133205, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38278074

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) have received global concern on adverse effects on pregnancy outcomes. Although human studies have reported fetal exposure to PFAS, the underlying mechanisms driving transplacental transfer of PFAS have not been sufficiently understood. The present study aimed to investigate chemical-specific transplacental transfer of PFAS and potential mechanisms based on a BeWo cell monolayer model. The findings of concentration- and time-dependent transport, asymmetry in bidirectional transport, molecular docking and transporter inhibition experiments indicate that passive diffusion and membrane transporter-involved active transport could collectively determine transplacental transport of PFAS. Membrane transporters could play important roles in chemical-specific transport. The inhibition of OAT transporter resulted in promotion of trans-monolayer transport for most PFAS, while an opposite trend was observed when P-gp, BCRP and MRP transporters were prohibited. By contrast, inhibition of OCT resulted in inhibitory effects on the transport of some PFAS (i.e., PFHxA, PFHpA, PFOA, and PFNA), and promotive effects on the other substances (i.e., PFUdA, PFHpS, PFOS, 6:2 Cl-PFESA and PFOSA). Therefore, simultaneous involvement of diverse membrane transporters in utero could result in complicated influence on transplacental transport. Our work constitutes a solid ground for further exploration of the effects of gestational PFAS exposure on birth outcomes.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Pregnancy , Female , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Molecular Docking Simulation , Neoplasm Proteins , Membrane Transport Proteins
15.
Magn Reson Med ; 91(3): 987-1001, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37936313

ABSTRACT

PURPOSE: This study aims to develop a high-efficiency and high-resolution 3D imaging approach for simultaneous mapping of multiple key tissue parameters for routine brain imaging, including T1 , T2 , proton density (PD), ADC, and fractional anisotropy (FA). The proposed method is intended for pushing routine clinical brain imaging from weighted imaging to quantitative imaging and can also be particularly useful for diffusion-relaxometry studies, which typically suffer from lengthy acquisition time. METHODS: To address challenges associated with diffusion weighting, such as shot-to-shot phase variation and low SNR, we integrated several innovative data acquisition and reconstruction techniques. Specifically, we used M1-compensated diffusion gradients, cardiac gating, and navigators to mitigate phase variations caused by cardiac motion. We also introduced a data-driven pre-pulse gradient to cancel out eddy currents induced by diffusion gradients. Additionally, to enhance image quality within a limited acquisition time, we proposed a data-sharing joint reconstruction approach coupled with a corresponding sequence design. RESULTS: The phantom and in vivo studies indicated that the T1 and T2 values measured by the proposed method are consistent with a conventional MR fingerprinting sequence and the diffusion results (including diffusivity, ADC, and FA) are consistent with the spin-echo EPI DWI sequence. CONCLUSION: The proposed method can achieve whole-brain T1 , T2 , diffusivity, ADC, and FA maps at 1-mm isotropic resolution within 10 min, providing a powerful tool for investigating the microstructural properties of brain tissue, with potential applications in clinical and research settings.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Mathematical Concepts
16.
BMC Genomics ; 24(1): 767, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38087190

ABSTRACT

BACKGROUND: Previous studies on the biomarkers of pathologic myopia choroidal neovascularization (pmCNV) development merely detected limited types of proteins and provide a meagre illustration of the underlying pathways. Hence, a landscape of protein changes in the aqueous humor (AH) of pmCNV patients is lacking. Here, to explore the potential mechanisms and biomarkers of pmCNV, we analyzed the clinical data and protein profile among atrophic (A) lesions, tractional lesions (T) and neovascular (N) lesions in myopic patients based on the ATN grading system for myopic maculopathy (MM). RESULTS: After investigating demographic data of our patients, a correlation was found between A and N lesions (R = 0.5753, P < 0.0001). Accordingly, groups were divided into patients without MM, patients with myopic atrophic maculopathy (MAM), and patients with pmCNV (N2a lesion). In proteomics analysis, the increased protein level of GFAP and complement-associated molecules in AH samples of the 3 groups also indicated that MAM and pmCNV shared similar characteristics. The GO enrichment and KEGG pathway analysis were performed, which mapped that differential expressed proteins mainly engaged in JAK-STAT pathway between the pmCNV group and two controls. Furthermore, we identified several potential biomarkers for pmCNV, including FCN3, GFAP, EGFR, SFRP3, PPP2R1A, SLIT2, and CD248. CONCLUSIONS: Atrophic lesions under pathologic myopic conditions demonstrated similarities to neovascularization development. Potential biomarkers including GFAP were associated with the pathogenesis of pmCNV. In summary, our study provides new insights for further research on pmCNV development.


Subject(s)
Choroidal Neovascularization , Macular Degeneration , Myopia , Retinal Diseases , Humans , Aqueous Humor/metabolism , Proteomics , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Myopia/metabolism , Retinal Diseases/metabolism , Retinal Diseases/pathology , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Biomarkers/metabolism , Antigens, Neoplasm , Antigens, CD/metabolism
17.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(6): 1647-1656, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38071041

ABSTRACT

OBJECTIVE: To establish a new digital polymerase chain reaction (dPCR) system for the detection of BCR-ABL fusion gene in patients with chronic myeloid leukemia (CML), and explore its analytical performance and clinical applicability in the detection of BCR-ABLp190/210/230. METHODS: A new dPCR system for detecting BCR-ABLp190/210/230 was successfully developed, and its sensitivity difference with qPCR and improvement of drug side effects in patients with CML during drug reduction or withdrawal were compared. RESULTS: Among 176 samples, qPCR and dPCR showed high consistency in the sensitivity of detecting BCR-ABL (82.39%), and the positive rate of dPCR was about 5 times higher that of qPCR (20.45% vs 3.98%). During follow-up, blood routine (25% vs 10%), kidney/liver/stomach (25% vs 20%) and cardiac function (10% vs 0) were significantly improved after drug reduction or withdrawal in patients with initial dPCR negative compared with before drug reduction or withdrawal. CONCLUSIONS: This new dPCR detection system can be applied to the detection of BCR-ABLp190/210/230. It has better consistency and higher positive detection rate than qPCR. Drug withdrawal or dose reduction guided by dPCR has a certain effect on improving drug side effects.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
18.
Front Oncol ; 13: 1239636, 2023.
Article in English | MEDLINE | ID: mdl-38152364

ABSTRACT

Purpose: To evaluate the efficacy and safety of 3D-printed tissue compensations in breast cancer patients receiving breast reconstruction and postmastectomy radiotherapy (PMRT). Methods and materials: We enrolled patients with breast cancer receiving breast reconstruction and PMRT. The dose distribution of target and skin, conformability, and dose limit of organs at risk (OARs) were collected to evaluate the efficacy of the 3D-printed bolus. Radiation Therapy Oncology Group (RTOG) radiation injury classification was used to evaluated the skin toxicities. Results: A total of 30 patients diagnosed between October 2019 to July 2021 were included for analysis. Among all the patients, the 3D-printed bolus could ensure the dose coverage of planning target volume (PTV) [homogeneity index (HI) 0.12 (range: 0.08-0.18)], and the mean doses of D99%, D98%, D95%, D50%, D2% and Dmean were 4606.29cGy, 4797.04cGy, 4943.32cGy, 5216.07cGy, 5236.10cGy, 5440.28cGy and 5462.10cGy, respectively. The bolus demonstrated an excellent conformability, and the mean air gaps between the bolus and the chest wall in five quadrants were 0.04cm, 0.18cm, 0.04cm, 0.04cm and 0.07cm, respectively. In addition, the bolus had acceptable dosage limit of OARs [ipsilateral lung: Dmean 1198.68 cGy, V5 46.10%, V20 21.66%, V30 16.31%); heart: Dmean 395.40 cGy, V30 1.02%, V40 0.22%; spinal cord planning risk volume (PRV): Dmax 1634 cGy] and skin toxicity (grade 1, 76.0%; grade 2, 21.0%; grade 3, 3.3%). Conclusion: The 3D-printed bolus offers advantages in terms of dose uniformity and controllable skin toxicities in patients receiving breast reconstruction and PMRT. Further research is needed to comprehensively evaluate the effectiveness of the 3Dprinted bolus in this patient subset.

19.
PLoS One ; 18(11): e0293935, 2023.
Article in English | MEDLINE | ID: mdl-37910520

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0289473.].

20.
Biomimetics (Basel) ; 8(6)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37887582

ABSTRACT

The flexibility of insect wings should be considered in the design of bionic micro flapping-wing aircraft. The honeybee is an ideal biomimetic object because its wings are small and possess a concise vein pattern. In this paper, we focus on resilin, an important flexible factor in honeybees' forewings. Both resilin joints and resilin stripes are considered in the finite element model, and their mechanical behaviors are studied comprehensively. Resilin was found to increase the static deflections in chordwise and spanwise directions by 1.4 times and 1.9 times, respectively. In modal analysis, natural frequencies of the first bending and first torsional modes were found to be decreased significantly-especially the latter, which was reduced from 500 Hz to 217 Hz-in terms of resilin joints and stripes, closely approaching flapping frequency. As a result, the rotational angle amplitude in dynamic responses is remarkable, with an amplification ratio of about six. It was also found that resilin joints and stripes together lead to well-cambered sections and improve the stress concentrations in dynamic deformation. As resilin is widespread in insect wings, the study could help our understanding of the flexible mechanism of wing structure and inspire the development of flexible airfoils.

SELECTION OF CITATIONS
SEARCH DETAIL
...