Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Photochem Photobiol B ; 252: 112862, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38330691

ABSTRACT

Catharanthus roseus produces a large array of terpenoid indole alkaloids (TIAs) that are important natural source for many drugs. Ultraviolet B (UVB) radiation have been proved to have regulatory effect towards biosynthesis of TIAs, which were meaningful for boost of TIA production. To decipher more comprehensive molecular characteristics in C. roseus under UVB radiation, integrated analysis of the nuclear proteome together with the transcriptome data under UVB radiation were performed. Expression of genes related to transmembrane transporters gradually increased during the prolonged exposure to UVB radiation. Some of known TIA transporters were affected by UVB. Abundance of proteins associated with spliceosome and nucleocytoplasmic transport increased. Homologs belonging to ORCA and CrWRKY transcription factors family increased at both transcriptomic and proteomic levels. At the same time, the numbers of differential alternative splicing events between UVB-radiated and white-light-treated plants continuously increased. These results suggest that the nucleus participated in early response of C. roseus under UVB radiation, where alternative splicing events occurred and might regulate multiple pathways. Furthermore, integrative omics analysis indicates that expression of enzymes at the terminal stages of seco-iridoid pathway decreased with the prolonged radiation exposure, potentially inhibiting further rise of TIA synthesis under extended UVB exposure.


Subject(s)
Catharanthus , Transcriptome , Catharanthus/genetics , Catharanthus/metabolism , Proteomics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant
2.
Int J Biol Macromol ; 240: 124353, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37059281

ABSTRACT

Theaflavins (TFs) are important quality compounds in black tea with a variety of biological activities. However, direct extraction of TFs from black tea is inefficient and costly. Therefore, we cloned two PPO isozymes from Huangjinya tea, termed HjyPPO1 and HjyPPO3. Both isozymes oxidized corresponding catechin substrates for the formation of four TFs (TF1, TF2A, TF2B, TF3), and the optimal catechol-type catechin to pyrogallol-type catechin oxidation rate of both isozymes was 1:2. In particular, the oxidation efficiency of HjyPPO3 was higher than that of HjyPPO1. The optimum pH and temperature of HjyPPO1 were 6.0 and 35 °C, respectively, while those of HjyPPO3 were 5.5 and 30 °C, respectively. Molecular docking simulation indicated that the unique residue of HjyPPO3 at Phe260 was more positive and formed a π-π stacked structure with His108 to stabilize the active region. In addition, the active catalytic cavity of HjyPPO3 was more conducive for substrate binding by extensive hydrogen bonding.


Subject(s)
Camellia sinensis , Catechin , Camellia sinensis/chemistry , Catechin/chemistry , Catechol Oxidase/metabolism , Isoenzymes , Molecular Docking Simulation , Antioxidants , Tea/genetics , Tea/chemistry , Cloning, Molecular
3.
J Plant Physiol ; 280: 153894, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36525836

ABSTRACT

Mahonia bealei and Mahonia fortunei are important plant resources in Traditional Chinese Medicine that are valued for their high levels of benzylisoquinoline alkaloids (BIAs). Although the phytotoxic activity of BIAs has been recognized, information is limited on the mechanism of action by which these compounds regulate photosynthetic activity. Here, we performed comparative chloroplast genome analysis to examine insertions and deletions in the two species. We found a GATA-motif located in the promoter region of the ndhF gene of only M. bealei. K-mer frequency-based diversity analysis illustrated the close correlation between the GATA-motif and leaf phenotype. We found that the GATA-motif significantly inhibits GUS gene expression in tobacco during the dark-light transition (DLT). The expression of ndhF was downregulated in M. bealei and upregulated in M. fortunei during the DLT. NDH-F activity was remarkably decreased and exhibited a significant negative correlation with BIA levels in M. bealei during the DLT. Furthermore, the NADPH produced through photosynthetic metabolism was found to decrease in M. bealei during the DLT. Taken together, our results indicate that this GATA-motif might act as the functional site by which BIAs inhibit photosynthetic metabolism through downregulating ndhF expression during the DLT.


Subject(s)
Alkaloids , Benzylisoquinolines , Mahonia , Mahonia/chemistry , Plant Extracts/pharmacology , Chloroplasts
4.
ACS Omega ; 7(13): 11343-11352, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35415355

ABSTRACT

Moracins, a kind of 2-phenyl-benzofuran compound from Moraceae, serve as phytoalexins with antimicrobial, anti-inflammatory, antitumor, and antidiabetes activities and respond to biotic and abiotic stresses, while their biosynthetic pathway and regulatory mechanism remain unclear. Here, we report a de novo transcriptome sequencing for different tissues of seedlings, as well as leaves under different stresses, in M. alba L. A total of 88 282 unigenes were assembled with an average length of 937 bp, and 82.2% of them were annotated. On the basis of the differential expression analysis and enzymatic activity assays in vitro, moracins were traced to the phenylpropanoid pathway, and a putative biosynthetic pathway of moracins was proposed. Unigenes coding key enzymes in the pathway were identified and their expression levels were verified by real-time quantitative reverse transcription PCR (qRT-PCR). Particularly, a p-coumaroyl CoA 2'-hydroxylase was presumed to be involved in the biosynthesis of stilbenes and deoxychalcones in mulberry. Additionally, the transcription factors that might participate in the regulation of moracin biosynthesis were obtained by coexpression analysis. These results shed light on the putative biosynthetic pathway of moracins, providing a basis for further investigation in functional characterization and transcriptional regulation of moracin biosynthesis in mulberry.

5.
Front Plant Sci ; 13: 1092857, 2022.
Article in English | MEDLINE | ID: mdl-36618608

ABSTRACT

Lonicera japonica is not only an important resource of traditional Chinese medicine, but also has very high horticultural value. Studies have been performed on the physiological responses of L. japonica leaves to chilling, however, the molecular mechanism underlying the low temperature-induced leaves morphological changes remains unclear. In this study, it has been demonstrated that the ratio of pigments content including anthocyanins, chlorophylls, and carotenoids was significantly altered in response to chilling condition, resulting in the color transformation of leaves from green to purple. Transcriptomic analysis showed there were 10,329 differentially expressed genes (DEGs) co-expressed during chilling stress. DEGs were mainly mapped to secondary metabolism, cell wall, and minor carbohydrate. The upregulated genes (UGs) were mainly enriched in protein metabolism, transport, and signaling, while UGs in secondary metabolism were mainly involved in phenylpropaoids-flavonoids pathway (PFP) and carotenoids pathway (CP). Protein-protein interaction analysis illustrated that 21 interacted genes including CAX3, NHX2, ACA8, and ACA9 were enriched in calcium transport/potassium ion transport. BR biosynthesis pathway related genes and BR insensitive (BRI) were collectively induced by chilling stress. Furthermore, the expression of genes involved in anthocyanins and CPs as well as the content of chlorogenic acid (CGA) and luteoloside were increased in leaves of L. japonica under stress. Taken together, these results indicate that the activation of PFP and CP in leaves of L. japonica under chilling stress, largely attributed to the elevation of calcium homeostasis and stimulation of BR signaling, which then regulated the PFP/CP related transcription factors.

6.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830127

ABSTRACT

Electromagnetic energy is the backbone of wireless communication systems, and its progressive use has resulted in impacts on a wide range of biological systems. The consequences of electromagnetic energy absorption on plants are insufficiently addressed. In the agricultural area, electromagnetic-wave irradiation has been used to develop crop varieties, manage insect pests, monitor fertilizer efficiency, and preserve agricultural produce. According to different frequencies and wavelengths, electromagnetic waves are typically divided into eight spectral bands, including audio waves, radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays. In this review, among these electromagnetic waves, effects of millimeter waves, ultraviolet, and gamma rays on plants are outlined, and their response mechanisms in plants through proteomic approaches are summarized. Furthermore, remarkable advancements of irradiating plants with electromagnetic waves, especially ultraviolet, are addressed, which shed light on future research in the electromagnetic field.


Subject(s)
Electromagnetic Radiation/classification , Plants/metabolism , Plants/radiation effects , Proteome/metabolism , Proteomics/methods , Gamma Rays , Light , Microwaves , Radio Waves , Ultraviolet Rays , X-Rays
7.
Front Genet ; 12: 646818, 2021.
Article in English | MEDLINE | ID: mdl-34512711

ABSTRACT

BACKGROUND: Stomach adenocarcinoma (STAD) is the most common histological type of stomach cancer, which causes a considerable number of deaths worldwide. This study aimed to identify its potential biomarkers with the notion of revealing the underlying molecular mechanisms. METHODS: Gene expression profile microarray data were downloaded from the Gene Expression Omnibus (GEO) database. The "limma" R package was used to screen the differentially expressed genes (DEGs) between STAD and matched normal tissues. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for function enrichment analyses of DEGs. The STAD dataset from The Cancer Genome Atlas (TCGA) database was used to identify a prognostic gene signature, which was verified in another STAD dataset from the GEO database. CIBERSORT algorithm was used to characterize the 22 human immune cell compositions. The expression of LRFN4 and CTHRC1 in tissues was determined by quantitative real-time PCR from the patients recruited to the present study. RESULTS: Three public datasets including 90 STAD patients and 43 healthy controls were analyzed, from which 44 genes were differentially expressed in all three datasets. These genes were implicated in biological processes including cell adhesion, wound healing, and extracellular matrix organization. Five out of 44 genes showed significant survival differences. Among them, CTHRC1 and LRFN4 were selected for construction of prognostic signature by univariate Cox regression and stepwise multivariate Cox regression in the TCGA-STAD dataset. The fidelity of the signature was evaluated in another independent dataset and showed a good classification effect. The infiltration levels of multiple immune cells between high-risk and low-risk groups had significant differences, as well as two immune checkpoints. TIM-3 and PD-L2 were highly correlated with the risk score. Multiple signaling pathways differed between the two groups of patients. At the same time, the expression level of LRFN4 and CTHRC1 in tissues analyzed by quantitative real-time PCR were consistent with the in silico findings. CONCLUSION: The present study constructed the prognostic signature by expression of CTHRC1 and LRFN4 for the first time via comprehensive bioinformatics analysis, which provided the potential therapeutic targets of STAD for clinical treatment.

8.
Front Plant Sci ; 12: 794906, 2021.
Article in English | MEDLINE | ID: mdl-35087555

ABSTRACT

Mahonia bealei (M. bealei) is a traditional Chinese medicine containing a high alkaloid content used to treat various diseases. Generally, only dried root and stem are used as medicines, considering that the alkaloid content in M. bealei leaves is lower than in the stems and roots. Some previous research found that alkaloid and flavonoid contents in the M. bealei leaves may increase when exposed to ultraviolet B (UV-B) radiation. However, the underlying mechanism of action is still unclear. In this study, we used titanium dioxide material enrichment and mass-based label-free quantitative proteomics techniques to explore the effect and mechanism of M. bealei leaves when exposed to UV-B treatment. Our data suggest that UV-B radiation increases the ATP content, photosynthetic pigment content, and some enzymatic/nonenzymatic indicators in the leaves of M. bealei. Moreover, phosphoproteomics suggests phosphoproteins related to mitogen-activated protein kinase (MAPK) signal transduction and the plant hormone brassinosteroid signaling pathway as well as phosphoproteins related to photosynthesis, glycolysis, the tricarboxylic acid cycle, and the amino acid synthesis/metabolism pathway are all affected by UV-B radiation. These results suggest that the UV-B radiation activates the oxidative stress response, MAPK signal transduction pathway, and photosynthetic energy metabolism pathway, which may lead to the accumulation of secondary metabolites in M. bealei leaves.

9.
J Proteomics ; 221: 103781, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32294531

ABSTRACT

To investigate the mechanism of promotive effect of plant-derived smoke on the soybean growth, a gel-free/label-free proteomics was performed. Smoke solutions were irrigated on soybean or supplied simultaneously with flooding stress. Morphological and physiological analyses were performed for the confirmation of proteomic result. Metabolomic change was investigated to correlate proteomic change with metabolism regulation. Under normal condition, the length of root including hypocotyl increased in soybean treated with 2000 ppm plant-derived smoke within 4 days, as well as nitric oxide content. Proteins related to protein synthesis especially arginine metabolism were altered; metabolites related to amino acid, carboxylic acids, and sugars were mostly altered. Integrated analysis of omics data indicated that plant-derived smoke regulated nitrogen­carbon transformation through ornithine synthesis pathway and promoted soybean normal growth. Under flooding, the number of lateral roots increased with root tip degradation in soybean treated with smoke solutions. Proteins related to ubiquitin-proteasome pathway were altered and led to sacrifice-for-survival-mechanism-driven degradation of root tip in soybean, which enabled accumulation of metabolites and guaranteed lateral root development during soybean recovery after flooding. These findings suggest that plant-derived smoke improves early stage of growth in soybean with regulation of ornithine-synthesis pathway and ubiquitin-proteasome pathway. BIOLOGICAL SIGNIFICANCE: Plant-derived smoke plays a key role in crop growth, however, the understanding of soybean in response to smoke treatment remains premature. Therefore, gel-free/label-free proteomic analysis was used for comprehensive study on the dual effect of smoke to soybean under normal and flooding conditions. Under normal condition, plant-derived smoke regulated nitrogen­carbon transformation through ornithine synthesis pathway and resulted in the increase of the length of root including hypocotyl in soybean within 4 days. Under flooding condition, plant-derived smoke induced inhibition of ubiquitin-proteasome pathway and led to sacrifice-for-survival-mechanism-driven degradation of root tip in soybean, which enabled accumulation of metabolites and promoted lateral root development during soybean recovery after flooding.


Subject(s)
Glycine max , Proteomics , Floods , Gene Expression Regulation, Plant , Ornithine , Plant Proteins/metabolism , Plant Roots/metabolism , Proteasome Endopeptidase Complex , Smoke , Glycine max/metabolism , Stress, Physiological , Ubiquitins
10.
Int J Mol Sci ; 21(2)2020 Jan 12.
Article in English | MEDLINE | ID: mdl-31940953

ABSTRACT

Improving soybean growth and tolerance under environmental stress is crucial for sustainable development. Millimeter waves are a radio-frequency band with a wavelength range of 1-10 mm that has dynamic effects on organisms. To investigate the potential effects of millimeter-waves irradiation on soybean seedlings, morphological and proteomic analyses were performed. Millimeter-waves irradiation improved the growth of roots/hypocotyl and the tolerance of soybean to flooding stress. Proteomic analysis indicated that the irradiated soybean seedlings recovered under oxidative stress during growth, whereas proteins related to glycolysis and ascorbate/glutathione metabolism were not affected. Immunoblot analysis confirmed the promotive effect of millimeter waves to glycolysis- and redox-related pathways under flooding conditions. Sugar metabolism was suppressed under flooding in unirradiated soybean seedlings, whereas it was activated in the irradiated ones, especially trehalose synthesis. These results suggest that millimeter-waves irradiation on soybean seeds promotes the recovery of soybean seedlings under oxidative stress, which positively regulates soybean growth through the regulation of glycolysis and redox related pathways.


Subject(s)
Glycine max/growth & development , Oxidative Stress/radiation effects , Plant Proteins/metabolism , Proteomics/methods , Chromatography, Liquid , Floods , Gene Expression Regulation, Developmental/radiation effects , Gene Expression Regulation, Plant/radiation effects , Mass Spectrometry , Nanotechnology , Plant Proteins/radiation effects , Seedlings/growth & development , Seedlings/metabolism , Seedlings/radiation effects , Glycine max/metabolism , Glycine max/radiation effects , Stress, Physiological
11.
J Proteomics ; 208: 103470, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31374363

ABSTRACT

Lonicera japonica Thunb. is an important medicinal plant. The secondary metabolites in L. japonica are diverse and vary in levels during development, leading to the ambiguous evaluation for its medical value. In order to reveal the regulatory mechanism of secondary metabolites during the flowering stages, transcriptomic, proteomic, and metabolomic analyses were performed. The integration analysis of omic-data illustrated that the metabolic changes over the flower developmental stages were mainly involved in sugar metabolism, lipopolysaccharide biosynthesis, carbon conversion, and secondary metabolism. Further proteomic analysis revealed that uniquely identified proteins were mainly involved in glycolysis/phenylpropanoids and tricarboxylic acid cycle/terpenoid backbone pathways in early and late stages, respectively. Transketolase was commonly identified in the 5 developmental stages and 2-fold increase in gold flowering stage compared with juvenile bud stage. Simple phenylpropanoids/flavonoids and 1-deoxy-D-xylulose-5-phosphate were accumulated in early stages and upregulated in late stages, respectively. These results indicate that phenylpropanoids were accumulated attributing to the activated glycolysis process in the early stages, while the terpenoids biosynthetic pathways might be promoted by the transketolase-contained regulatory circuit in the late stages of L. japonica flower development. BIOLOGICAL SIGNIFICANCE: Lonicera japonica Thunb. is a native species in the East Asian and used in traditional Chinese medicine. In order to reveal the regulatory mechanism of secondary metabolites during the flowering stages, transcriptomic, proteomic, and metabolomic analyses were performed. The integration analysis of omic-data illustrated that the metabolic changes over the flower developmental stages were mainly involved in sugar metabolism, lipopolysaccharide biosynthesis, carbon conversion, and secondary metabolism. Our results indicate that phenylpropanoids were accumulated attributing to the activated glycolysis process in the early stages, while the terpenoids biosynthetic pathways might be promoted by the transketolase-contained regulatory circuit in the late stages of L. japonica flower development.


Subject(s)
Gene Expression Profiling , Lonicera , Metabolome , Metabolomics , Proteomics , Flowers/genetics , Flowers/metabolism , Lonicera/genetics , Lonicera/metabolism
12.
J Proteome Res ; 18(9): 3328-3341, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31356092

ABSTRACT

Ultraviolet (UV)-B radiation acts as an elicitor to enhance the production of secondary metabolites in medicinal plants. To investigate the mechanisms, which lead to secondary metabolites in Catharanthus roseus under UVB radiation, a phosphoproteomic technique was used. ATP content increased in the leaves of C. roseus under UVB radiation. Phosphoproteins related to calcium such as calmodulin, calcium-dependent kinase, and heat shock proteins increased. Phosphoproteins related to protein synthesis/modification/degradation and signaling intensively changed. Metabolomic analysis indicated that the metabolites classified with pentoses, aromatic amino acids, and phenylpropanoids accumulated under UVB radiation. Phosphoproteomic and immunoblot analyses indicated that proteins related to glycolysis and the reactive-oxygen species scavenging system were changed under UVB radiation. These results suggest that UVB radiation activates the calcium-related pathway and reactive-oxygen species scavenging system in C. roseus. These changes lead to the upregulation of proteins, which are responsible for the redox reactions in secondary metabolism and are important for the accumulation of secondary metabolites in C. roseus under UVB radiation.


Subject(s)
Catharanthus/metabolism , Phosphoproteins/genetics , Plant Proteins/metabolism , Secondary Metabolism/radiation effects , Calcium/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Catharanthus/genetics , Catharanthus/radiation effects , Phosphoproteins/radiation effects , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Proteins/radiation effects , Plant Roots/metabolism , Plant Roots/radiation effects , Plants, Medicinal/radiation effects , Secondary Metabolism/genetics , Signal Transduction/radiation effects , Ultraviolet Rays
13.
BMC Plant Biol ; 19(1): 198, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31088368

ABSTRACT

BACKGROUND: Lonicera japonica Thunb. flower has been used for the treatment of various diseases for a long time and attracted many studies on its potential effects. Transcription factors (TFs) regulate extensive biological processes during plant development. As the restricted reports of L. japonica on TFs, our work was carried out to better understand the TFs' regulatory roles under different developmental stages in L. japonica. RESULTS: In this study, 1316 TFs belonging to 52 families were identified from the transcriptomic data, and corresponding expression profiles during the L. japonica flower development were comprehensively analyzed. 917 (69.68%) TFs were differentially expressed. TFs in bHLH, ERF, MYB, bZIP, and NAC families exhibited obviously altered expression during flower growth. Based on the analysis of differentially expressed TFs (DETFs), TFs in MYB, WRKY, NAC and LSD families that involved in phenylpropanoids biosynthesis, senescence processes and antioxidant activity were detected. The expression of MYB114 exhibited a positive correlation with the contents of luteoloside; Positive correlation was observed among the expression of MYC12, chalcone synthase (CHS) and flavonol synthase (FLS), while negative correlation was observed between the expression of MYB44 and the synthases; The expression of LSD1 was highly correlated with the expression of SOD and the total antioxidant capacity, while the expression of LOL1 and LOL2 exhibited a negative correlation with them; Many TFs in NAC and WRKY families may be potentially involved in the senescence process regulated by hormones and reactive oxygen species (ROS). The expression of NAC19, NAC29, and NAC53 exhibited a positive correlation with the contents of ABA and H2O2, while the expression of WRKY53, WRKY54, and WRKY70 exhibited a negative correlation with the contents of JA, SA and ABA. CONCLUSIONS: Our study provided a comprehensive characterization of the expression profiles of TFs during the developmental stages of L. japonica. In addition, we detected the key TFs that may play significant roles in controlling active components biosynthesis, antioxidant activity and flower senescence in L. japonica, thereby providing valuable insights into the molecular networks underlying L. japonica flower development.


Subject(s)
Flowers/growth & development , Gene Expression Regulation, Plant , Lonicera/growth & development , Plant Proteins/metabolism , Transcription Factors/metabolism , Chlorogenic Acid/metabolism , Chromatography, High Pressure Liquid , Flowers/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Glucosides/metabolism , Hydrogen Peroxide/metabolism , Lonicera/genetics , Lonicera/metabolism , Luteolin/metabolism , Plant Proteins/genetics , Sequence Analysis, DNA , Transcription Factors/genetics
14.
Int J Mol Sci ; 20(2)2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30654535

ABSTRACT

Morus alba is an important medicinal plant that is used to treat human diseases. The leaf, branch, and root of Morus can be applied as antidiabetic, antioxidant, and anti-inflammatory medicines, respectively. To explore the molecular mechanisms underlying the various pharmacological functions within different parts of Morus, organ-specific proteomics were performed. Protein profiles of the Morus leaf, branch, and root were determined using a gel-free/label-free proteomic technique. In the Morus leaf, branch, and root, a total of 492, 414, and 355 proteins were identified, respectively, including 84 common proteins. In leaf, the main function was related to protein degradation, photosynthesis, and redox ascorbate/glutathione metabolism. In branch, the main function was related to protein synthesis/degradation, stress, and redox ascorbate/glutathione metabolism. In root, the main function was related to protein synthesis/degradation, stress, and cell wall. Additionally, organ-specific metabolites and antioxidant activities were analyzed. These results revealed that flavonoids were highly accumulated in Morus root compared with the branch and leaf. Accordingly, two root-specific proteins named chalcone flavanone isomerase and flavonoid 3,5-hydroxylase were accumulated in the flavonoid pathway. Consistent with this finding, the content of the total flavonoids was higher in root compared to those detected in branch and leaf. These results suggest that the flavonoids in Morus root might be responsible for its biological activity and the root is the main part for flavonoid biosynthesis in Morus.


Subject(s)
Morus/metabolism , Organ Specificity , Proteomics/methods , Staining and Labeling , Antioxidants/metabolism , Citric Acid Cycle , Flavonoids/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Glycolysis , Metabolome , Morus/genetics , Organ Specificity/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/genetics , Secondary Metabolism
15.
Gene ; 689: 43-50, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30528270

ABSTRACT

Atmospheric CO2 level is one of the most important factors which affect plant growth and crop production. Although many crucial genes and pathways have been identified in response to atmospheric CO2 changes, the integrated and precise mechanisms of plant CO2 response are not well understood. Alternative splicing (AS) is an important gene regulation process that affects many biological processes in plants. However, the AS pattern changes in plants in response to elevated CO2 levels have not yet been investigated. Here, we used RNA-Seq data of Arabidopsis thaliana grown under different CO2 concentration to analyze the global changes in AS. We found that AS increased with the rise in CO2 concentration. Additionally, we identified 345 differentially expressed (DE) genes and 251 differentially alternative splicing (DAS) genes under the elevated CO2 condition. Moreover, the results showed that the expression of most of the DAS genes did not change significantly, indicating that AS can serve as an independent mechanism for gene regulation in response to elevated CO2. Furthermore, our analysis of function categories revealed that the DAS genes were associated mainly with the stimulus response. Overall, this the first study to explore the changes of AS in plants in response to elevated CO2.


Subject(s)
Alternative Splicing , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis/genetics , Carbon Dioxide/pharmacology , Alternative Splicing/drug effects , Alternative Splicing/genetics , Dose-Response Relationship, Drug , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Plant Development/drug effects
16.
Int J Mol Sci ; 19(12)2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30563128

ABSTRACT

Polyphenol oxidase (PPO) catalyzes the o-hydroxylation of monophenols and oxidation of o-diphenols to quinones. Although the effects of PPO on plant physiology were recently proposed, little has been done to explore the inherent molecular mechanisms. To explore the in vivo physiological functions of PPO, a model with decreased PPO expression and enzymatic activity was constructed on Clematis terniflora DC. using virus-induced gene silencing (VIGS) technology. Proteomics was performed to identify the differentially expressed proteins (DEPs) in the model (VC) and empty vector-carrying plants (VV) untreated or exposed to high levels of UV-B and dark (HUV-B+D). Following integration, it was concluded that the DEPs mainly functioned in photosynthesis, glycolysis, and redox in the PPO silence plants. Mapman analysis showed that the DEPs were mainly involved in light reaction and Calvin cycle in photosynthesis. Further analysis illustrated that the expression level of adenosine triphosphate (ATP) synthase, the content of chlorophyll, and the photosynthesis rate were increased in VC plants compared to VV plants pre- and post HUV-B+D. These results indicate that the silence of PPO elevated the plant photosynthesis by activating the glycolysis process, regulating Calvin cycle and providing ATP for energy metabolism. This study provides a prospective approach for increasing crop yield in agricultural production.


Subject(s)
Catechol Oxidase , Clematis , Gene Silencing , Photosynthesis , Plant Leaves , Plant Proteins , Proteomics , Catechol Oxidase/genetics , Catechol Oxidase/metabolism , Clematis/genetics , Clematis/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
17.
Plant Cell Physiol ; 59(11): 2214-2227, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30020500

ABSTRACT

Pharmaceutically active compounds from medical plants are attractive as a major source for new drug development. Prenylated stilbenoids with increased lipophilicity are valuable secondary metabolites which possess a wide range of biological activities. So far, many prenylated stilbenoids have been isolated from Morus alba but the enzyme responsible for the crucial prenyl modification remains unknown. In the present study, a stilbenoid-specific prenyltransferase (PT), termed Morus alba oxyresveratrol geranyltransferase (MaOGT), was identified and functionally characterized in vitro. MaOGT recognized oxyresveratrol and geranyl diphosphate (GPP) as natural substrates, and catalyzed oxyresveratrol prenylation. Our results indicated that MaOGT shared common features with other aromatic PTs, e.g. multiple transmembrane regions, conserved functional domains and targeting to plant plastids. This distinct PT represents the first stilbenoid-specific PT accepting GPP as a natural prenyl donor, and could help identify additional functionally varied PTs in moraceous plants. Furthermore, MaOGT might be applied for high-efficiency and large-scale prenylation of oxyresveratrol to produce bioactive compounds for potential therapeutic applications.


Subject(s)
Dimethylallyltranstransferase/metabolism , Diphosphates/metabolism , Diterpenes/metabolism , Morus/enzymology , Stilbenes/metabolism , Catalysis , Dimethylallyltranstransferase/genetics , Morus/genetics , Morus/metabolism , Organisms, Genetically Modified , Phylogeny , Plant Extracts/metabolism , Plant Leaves/enzymology , Plant Leaves/metabolism , Plants, Genetically Modified , Prenylation , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Sequence Alignment , Substrate Specificity , Nicotiana
SELECTION OF CITATIONS
SEARCH DETAIL
...