Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Pathol ; 191(12): 2195-2202, 2021 12.
Article in English | MEDLINE | ID: mdl-34809787

ABSTRACT

The present study aimed to explore the roles of casein kinase 1α (CK1α) in endometriosis and its underlying mechanisms. Endometrial specimen were collected from the patients and healthy volunteers. The expression patterns of CK1α, phosphatase and tensin homolog (PTEN), and autophagy-related proteins were determined using immunohistochemistry staining, Western blot analysis, and quantitative RT-PCR. Besides, the CK1α-overexpressing cells and PTEN knockdown cells were constructed in the endometrial stromal cells isolated from endometriosis patients. In addition, the cells were transfected with pcDNA3.1-CK1α or pcDNA3.1-CK1α plus siRNA- PTEN. The expressions of CK1α, PTEN, and autophagy-related proteins were determined using Western blot and quantitative RT-PCR. The expressions of CK1α and autophagy-related 7 (Atg7) were significantly decreased in the ectopic endometrium compared with the eutopic endometrium. Spearman rank correlation analysis revealed positive correlations between CK1α and PTEN, CK1α and Atg7, and PTEN and Atg7. In addition, CK1α, PTEN, and autophagy-related proteins were down-regulated in ectopic endometrium. Interestingly, overexpression of CK1α significantly increased the expressions of autophagy-related proteins, whereas the protein expression of autophagy-related proteins was decreased with PTEN knock-down. CK1α regulated PTEN/Atg7-mediated autophagy in endometriosis.


Subject(s)
Autophagy/physiology , Casein Kinase Ialpha/genetics , Endometriosis/genetics , Uterine Diseases/genetics , Adult , Autophagy/genetics , Autophagy-Related Protein 7/physiology , Case-Control Studies , Casein Kinase Ialpha/physiology , Down-Regulation/genetics , Endometriosis/pathology , Female , Gene Expression Regulation, Enzymologic , Humans , PTEN Phosphohydrolase/physiology , Signal Transduction/genetics , Uterine Diseases/pathology , Young Adult
2.
Dose Response ; 17(2): 1559325819855538, 2019.
Article in English | MEDLINE | ID: mdl-31217757

ABSTRACT

Sulforaphane exerts anti-inflammatory activity in inflammatory diseases. The endometriosis (EM) is accompanied by chronic inflammation. The present study aims to explore the therapeutic effects of sulforaphane on EM and its underlying mechanism. An EM rat model was established by transplantation of autologous fragments. The rats were intragastrically administered sulforaphane (5 mg/kg, 15 mg/kg, and 30 mg/kg) for 3 weeks. The volumes of endometriotic foci and adhesion score were calculated at the end of the experiment. Levels of interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and vascular endothelial growth factor (VEGF) were determined by enzyme-linked immunosorbent assay (ELISA). Expressions of VEGF, B-cell lymphoma/leukemia 2 (Bcl-2), Bax, cleaved caspase-3, PI3K, and Akt in endometrial tissue were determined by Western blotting. Relative expressions of PI3K and Akt were determined by quantitative polymerase chain reaction. Posttreatment of sulforaphane dose-dependently decreased the volumes of endometriotic foci and adhesion score in EM model. Additionally, posttreatment of sulforaphane inhibited levels of IL-6, IL-10, TNF-α, IFN-γ, and VEGF in peritoneal fluid and plasma. Posttreatment of sulforaphane regulated the expressions of VEGF, bcl-2, Bax, and cleaved Caspase-3 in EM model. The underlying mechanism revealed that sulforaphane attenuated EM in the rat model by inhibition of PI3K/Akt signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL