Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
Plant Sci ; 326: 111510, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36341879

ABSTRACT

RAPID ALKALINIZATION FACTORs (RALFs), which are secreted peptides serving as extracellular signals transduced to the inside of the cell, interact with the receptor-like kinase FERONIA (FER) and participates in various biological pathways. Here, we identified 23 RALF and 2 FER genes in Hevea brasiliensis (para rubber tree), and characterized their expression patterns in different tissues, across the process of leaf development, and in response to the rubber yield-stimulating treatments of tapping and ethylene. Four Hevea latex (the cytoplasm of rubber-producing laticifers)-abundant RALF isoforms, HbRALF19, HbRALF3, HbRALF22, and HbRALF16 were listed with descending expression levels. Of the four HbRALFs, expressions of HbRALF3 were markedly regulated in an opposite way by the treatments of tapping (depression) and ethylene (stimulation). All of the four latex-abundant RALFs specifically interacted with the extracellular domain of HbFER1. Transgenic Arabidopsis plants overexpressing these HbRALFs displayed phenotypes similar to those reported for AtRALFs, such as shorter roots, smaller plant architecture, and delayed flowering. The application of HbRALF3 and HbRALF19 recombinant proteins significantly reduced the pH of Hevea latex, an important factor regulating latex metabolism. An in vitro rubber biosynthesis assay in a mixture of latex cytosol (C-serum) revealed a positive role of HbFER1 in rubber biosynthesis. Taken together, these data provide evidence for the participation of the HbRALF-FER module in rubber production.


Subject(s)
Hevea , Peptide Hormones , Hevea/genetics , Hevea/metabolism , Rubber/metabolism , Protein Kinases/genetics , Peptide Hormones/genetics , Peptide Hormones/metabolism , Latex/metabolism , Carrier Proteins/genetics , Plants, Genetically Modified/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
3.
Mol Oncol ; 17(1): 3-26, 2023 01.
Article in English | MEDLINE | ID: mdl-36018061

ABSTRACT

Protein S-palmitoylation (hereinafter referred to as protein palmitoylation) is a reversible lipid posttranslational modification catalyzed by the zinc finger DHHC-type containing (ZDHHC) protein family. The reverse reaction, depalmitoylation, is catalyzed by palmitoyl-protein thioesterases (PPTs), including acyl-protein thioesterases (APT1/2), palmitoyl protein thioesterases (PPT1/2), or alpha/beta hydrolase domain-containing protein 17A/B/C (ABHD17A/B/C). Proteins encoded by several oncogenes and tumor suppressors are modified by palmitoylation, which enhances the hydrophobicity of specific protein subdomains, and can confer changes in protein stability, membrane localization, protein-protein interaction, and signal transduction. The importance for protein palmitoylation in tumorigenesis has just started to be elucidated in the past decade; palmitoylation appears to affect key aspects of cancer, including cancer cell proliferation and survival, cell invasion and metastasis, and antitumor immunity. Here we review the current literature on protein palmitoylation in the various cancer types, and discuss the potential of targeting of palmitoylation enzymes or palmitoylated proteins for tumor treatment.


Subject(s)
Lipoylation , Neoplasms , Humans , Protein Processing, Post-Translational , Signal Transduction , Substrate Specificity
4.
Plants (Basel) ; 11(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36365332

ABSTRACT

Trehalose 6-phosphate (T6P), the intermediate of trehalose biosynthesis and a signaling molecule, affects crop yield via targeting sucrose allocation and utilization. As there have been no reports of T6P signaling affecting secondary metabolism in a crop plant, the rubber tree Hevea brasiliensis serves as an ideal model in this regard. Sucrose metabolism critically influences the productivity of natural rubber, a secondary metabolite of industrial importance. Here, we report on the characterization of the T6P synthase (TPS) gene family and the T6P/SNF1-related protein kinase1 (T6P/SnRK1) signaling components in Hevea laticifers under tapping (rubber harvesting), an agronomic manipulation that itself stimulates rubber production. A total of fourteen TPS genes were identified, among which a class II TPS gene, HbTPS5, seemed to have evolved with a function specialized in laticifers. T6P and trehalose increased when the trees were tapped, this being consistent with the observed enhanced activities of TPS and T6P phosphatase (TPP) and expression of an active TPS-encoding gene, HbTPS1. On the other hand, SnRK1 activities decreased, suggesting the inhibition of elevated T6P on SnRK1. Expression profiles of the SnRK1 marker genes coincided with elevated T6P and depressed SnRK1. Interestingly, HbTPS5 expression decreased significantly with the onset of tapping, suggesting a regulatory function in the T6P pathway associated with latex production in laticifers. In brief, transcriptional, enzymatic, and metabolic evidence supports the participation of T6P/SnRK1 signaling in rubber formation, thus providing a possible avenue to increasing the yield of a valuable secondary metabolite by targeting T6P in specific cells.

5.
Theranostics ; 12(16): 6898-6914, 2022.
Article in English | MEDLINE | ID: mdl-36276642

ABSTRACT

Rationale: Protein palmitoylation is tightly related to tumorigenesis or tumor progression as many oncogenes or tumor suppressors are palmitoylated. AEG-1, an oncogene, is commonly elevated in a variety of human malignancies, including hepatocellular carcinoma (HCC). Although AEG-1 was suggested to be potentially modified by protein palmitoylation, the regulatory roles of AEG-1 palmitoylation in tumor progression of HCC has not been explored. Methods: Techniques as Acyl-RAC assay and point mutation were used to confirm that AEG-1 is indeed palmitoylated. Moreover, biochemical experiments and immunofluorescent microscopy were applied to examine the cellular functions of AEG-1 palmitoylation in several cell lines. Remarkably, genetically modified knock-in (AEG-1-C75A) and knockout (Zdhhc6-KO) mice were established and subjected to the treatment of DEN to induce the HCC mice model, through which the roles of AEG-1 palmitoylation in HCC is directly addressed. Last, HCQ, a chemical compound, was introduced to prove in principal that elevating the level of AEG-1 palmitoylation might benefit the treatment of HCC in xenograft mouse model. Results: We showed that AEG-1 undergoes palmitoylation on a conserved cysteine residue, Cys-75. Blocking AEG-1 palmitoylation exacerbates the progression of DEN-induced HCC in vivo. Moreover, it was demonstrated that AEG-1 palmitoylation is dynamically regulated by zDHHC6 and PPT1/2. Accordingly, suppressing the level of AEG-1 palmitoylation by the deletion of Zdhhc6 reproduces the enhanced tumor-progression phenotype in DEN-induced HCC mouse model. Mechanistically, we showed that AEG-1 palmitoylation adversely regulates its protein stability and weakens AEG-1 and staphylococcal nuclease and tudor domain containing 1 (SND1) interaction, which might contribute to the alterations of the RISC activity and the expression of tumor suppressors. For intervention, HCQ, an inhibitor of PPT1, was applied to augment the level of AEG-1 palmitoylation, which retards the tumor growth of HCC in xenograft model. Conclusion: Our study suggests an unknown mechanism that AEG-1 palmitoylation dynamically manipulates HCC progression and pinpoints that raising AEG-1 palmitoylation might confer beneficial effect on the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Lipoylation , Cysteine/metabolism , Micrococcal Nuclease/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Cell Line, Tumor , Endonucleases/metabolism
6.
Front Immunol ; 13: 728455, 2022.
Article in English | MEDLINE | ID: mdl-35769463

ABSTRACT

Sphingosine-1-phosphate lyase is encoded by the Sgpl1 gene, degrades S1P, and is crucial for S1P homeostasis in animal models and humans. S1P lyase deficient patients suffer from adrenal insufficiency, severe lymphopenia, and skin disorders. In this study, we used random mutagenesis screening to identify a mouse line carrying a missense mutation of Sgpl1 (M467K). This mutation caused similar pathologies as Sgpl1 knock-out mice in multiple organs, but greatly preserved its lifespan, which M467K mutation mice look normal under SPF conditions for over 40 weeks, in contrast, the knock-out mice live no more than 6 weeks. When treated with Imiquimod, Sgpl1M467K mice experienced exacerbated skin inflammation, as revealed by aggravated acanthosis and orthokeratotic hyperkeratosis. We also demonstrated that the IL17a producing Vγ6+ cell was enriched in Sgpl1M467K skin and caused severe pathology after imiquimod treatment. Interestingly, hyperchromic plaque occurred in the mutant mice one month after Imiquimod treatment but not in the controls, which resembled the skin disorder found in Sgpl1 deficient patients. Therefore, our results demonstrate that Sgpl1M467K point mutation mice successfully modeled a human disease after being treated with Imiquimod. We also revealed a major subset of γδT cells in the skin, IL17 secreting Vγ6 T cells were augmented by Sgpl1 deficiency and led to skin pathology. Therefore, we have, for the first time, linked the IL17a and γδT cells to SPL insufficiency.


Subject(s)
Hyperpigmentation , Point Mutation , Animals , Homeostasis , Imiquimod , Mice , Mice, Knockout
7.
PLoS Pathog ; 18(6): e1010596, 2022 06.
Article in English | MEDLINE | ID: mdl-35666747

ABSTRACT

Schistosomiasis is caused by parasitic flatworms known as schistosomes and affects over 200 million people worldwide. Prevention of T cell exhaustion by blockade of PD-1 results in clinical benefits to cancer patients and clearance of viral infections, however it remains largely unknown whether loss of PD-1 could prevent or cure schistosomiasis in susceptible mice. In this study, we found that S. japonicum infection dramatically induced PD-1 expression in T cells of the liver where the parasites chronically inhabit and elicit deadly inflammation. Even in mice infected by non-egg-producing unisex parasites, we still observed potent induction of PD-1 in liver T cells of C57BL/6 mice following S. japonicum infection. To determine the function of PD-1 in schistosomiasis, we generated PD-1-deficient mice by CRISPR/Cas9 and found that loss of PD-1 markedly increased T cell count in the liver and spleen of infected mice. IL-4 secreting Th2 cells were significantly decreased in the infected PD-1-deficient mice whereas IFN-γ secreting CD4+ and CD8+ T cells were markedly increased. Surprisingly, such beneficial changes of T cell response did not result in eradication of parasites or in lowering the pathogen burden. In further experiments, we found that loss of PD-1 resulted in both beneficial T cell responses and amplification of regulatory T cells that prevented PD-1-deficient T cells from unleashing anti-parasite activity. Moreover, such PD-1-deficient Tregs exert excessive immunosuppression and express larger amounts of adenosine receptors CD39 and CD73 that are crucial for Treg-mediated immunosuppression. Our experimental results have elucidated the function of PD-1 in schistosomiasis and provide novel insights into prevention and treatment of schistosomiasis on the basis of modulating host adaptive immunity.


Subject(s)
Schistosoma japonicum , Schistosomiasis japonica , Animals , Humans , Immunosuppression Therapy , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/genetics , T-Lymphocytes, Regulatory
8.
Front Immunol ; 12: 749190, 2021.
Article in English | MEDLINE | ID: mdl-34737750

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are a special subtype of dendritic cells with the morphology of plasma cells. pDCs produce massive amounts of type I interferon (IFN-I), which was originally found to play an extremely pivotal role in antiviral immunity. Interestingly, accumulated evidence indicates that pDCs can also play an important role in tumorigenesis. In the human body, most of the IFN-α is secreted by activated pDCs mediated by toll-like receptor (TLR) stimulation. In many types of cancer, tumors are infiltrated by a large number of pDCs, however, these pDCs exhibit no response to TLR stimulation, and reduced or absent IFN-α production. In addition, tumor-infiltrating pDCs promote recruitment of regulatory T cells (Tregs) into the tumor microenvironment, leading to immunosuppression and promoting tumor growth. In this review, we discuss recent insights into the development of pDCs and their roles in a variety of malignancies, with special emphasis on the basic mechanisms.


Subject(s)
Dendritic Cells/immunology , Neoplasms/immunology , Animals , Humans
9.
Sci China Life Sci ; 64(8): 1227-1235, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33420927

ABSTRACT

Neutrophils are crucial for immunity and play important roles in inflammatory diseases; however, mouse models selectively deficient in neutrophils are limited, and neutrophil-specific diphtheria toxin (DT)-based depletion system has not yet been established. In this study, we generated a novel knock-in mouse model expressing diphtheria toxin receptor (DTR) under control of the endogenous Ly6G promoter. We showed that DTR expression was restricted to Ly6G+ neutrophils and complete depletion of neutrophils could be achieved by DT treatment at 24-48 h intervals. We characterized the effects of specific neutrophil depletion in mice at steady-state, with acute inflammation and during tumor growth. Our study presents a valuable new tool to study the roles of neutrophils in the immune system and during tumor progression.


Subject(s)
Diphtheria Toxin/immunology , Heparin-binding EGF-like Growth Factor/immunology , Neutrophils/immunology , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Neoplasms/immunology
10.
Front Cell Dev Biol ; 9: 769673, 2021.
Article in English | MEDLINE | ID: mdl-35118065

ABSTRACT

Functional genomics in a mammalian model such as mice is fundamental for understanding human biology. The CRISPR/Cas9 system dramatically changed the tempo of obtaining genetic mouse models due to high efficiency. However, experimental evidence for the establishment of sgRNA knock-in animals and analyses of their value in functional genomics are still not sufficient, particularly in mammalian models. In this study, we demonstrate that the establishment of sgRNA knock-in mice is feasible, and more importantly, crosses between sgRNA knock-in mice and the Cas9 constitutively expressing mice result in complete deletion of the target gene. Such sgRNA knock-in provides an alternative approach for in vivo genetic modification and can be useful in multiple circumstances, such as maintenance of genetically modified animals, which are difficult to breed as homozygotes, and cross of such mice to diverse genomic backgrounds to obtain genetically modified animals.

11.
Front Immunol ; 11: 607442, 2020.
Article in English | MEDLINE | ID: mdl-33488612

ABSTRACT

Zdhhc family genes are composed of 24 members that regulate palmitoylation, a post-translational modification process for proteins. Mutations in genes that alter palmitoylation or de-palmitoylation could result in neurodegenerative diseases and inflammatory disorders. In this study, we found that Zdhhc2 was robustly induced in psoriatic skin and loss of Zdhhc2 in mice by CRISPR/Cas9 dramatically inhibited pathology of the ear skin following imiquimod treatment. As psoriasis is an inflammatory disorder, we analyzed tissue infiltrating immune cells and cytokine production. Strikingly we found that a master psoriatic cytokine interferon-α (IFN-α) in the lesioned skin of wildtype (WT) mice was 23-fold higher than that in Zdhhc2 deficient counterparts. In addition, we found that CD45+ white blood cells (WBC) infiltrating in the skin of Zdhhc2 deficient mice were also significantly reduced. Amelioration in psoriasis and dramatically reduced inflammation of Zdhhc2 deficient mice led us to analyze the cellular components that were affected by loss of Zdhhc2. We found that imiquimod induced plasmacytoid dendritic cell (pDC) accumulation in psoriatic skin, spleen, and draining lymph nodes (DLN) were drastically decreased in Zdhhc2 deficient mice, and the expression of pDC activation marker CD80 also exhibited significantly inhibited in psoriatic skin. In further experiments, we confirmed the cell intrinsic effect of Zdhhc2 on pDCs as we found that loss of zDHHC2 in human CAL-1 pDC dampened both interferon regulatory factor 7 (IRF7) phosphorylation and IFN-α production. Therefore, we identified novel function of Zdhhc2 in controlling inflammatory response in psoriasis in mice and we also confirmed that crucial role of Zdhhc2 in pDCs by regulating IRF7 activity and production of the critical cytokine. Our results finding the dependence of IFN-α production on Zdhhc2 in inflamed murine skin and in human pDCs provide rationale for targeting this new molecule in treatment of inflammation.


Subject(s)
Acyltransferases/metabolism , Dendritic Cells/enzymology , Interferon-alpha/metabolism , Psoriasis/enzymology , Skin/enzymology , Tumor Suppressor Proteins/metabolism , Acyltransferases/genetics , Animals , Cell Line , Dendritic Cells/immunology , Disease Models, Animal , Humans , Imiquimod , Interferon-alpha/genetics , Lymphocyte Activation , Male , Mice, Inbred C57BL , Mice, Knockout , Psoriasis/chemically induced , Psoriasis/genetics , Psoriasis/immunology , Signal Transduction , Skin/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Suppressor Proteins/genetics , Up-Regulation
12.
Sci Rep ; 6: 33151, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27619402

ABSTRACT

Along with changes in morphology in the course of maturation, leaves of Hevea brasiliensis become more resistant to leaf diseases, including the South American Leaf Blight (SALB), a devastating fungal disease of this economically important tree species. To understand the underlying mechanisms of this defense, and to identify the candidate genes involved, we sequenced the Hevea leaf transcriptome at four developmental stages (I to IV) by Illumina sequencing. A total of 62.6 million high-quality reads were generated, and assembled into 98,796 unique transcripts. We identified 3,905 differentially expressed genes implicated in leaf development, 67.8% (2,651) of which were during the transition to leaf maturation. The genes involved in cyanogenic metabolism, lignin and anthocyanin biosynthesis were noteworthy for their distinct patterns of expression between developing leaves (stages I to III) and mature leaves (stage IV), and the correlation with the change in resistance to SALB and the Oidium/Colletotrichum leaf fall. The results provide a first profile of the molecular events that relate to the dynamics of leaf morphology and defense strategies during Hevea leaf development. This dataset is beneficial to devising strategies to engineer resistance to leaf diseases as well as other in-depth studies in Hevea tree.


Subject(s)
Disease Resistance/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Hevea/genetics , Plant Diseases/genetics , Plant Leaves/genetics , Ascomycota/physiology , Cluster Analysis , Colletotrichum/physiology , Gene Ontology , Genes, Plant/genetics , Hevea/growth & development , Hevea/microbiology , Plant Diseases/microbiology , Plant Leaves/growth & development , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism
13.
Nat Plants ; 2(6): 16073, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27255837

ABSTRACT

The Para rubber tree (Hevea brasiliensis) is an economically important tropical tree species that produces natural rubber, an essential industrial raw material. Here we present a high-quality genome assembly of this species (1.37 Gb, scaffold N50 = 1.28 Mb) that covers 93.8% of the genome (1.47 Gb) and harbours 43,792 predicted protein-coding genes. A striking expansion of the REF/SRPP (rubber elongation factor/small rubber particle protein) gene family and its divergence into several laticifer-specific isoforms seem crucial for rubber biosynthesis. The REF/SRPP family has isoforms with sizes similar to or larger than SRPP1 (204 amino acids) in 17 other plants examined, but no isoforms with similar sizes to REF1 (138 amino acids), the predominant molecular variant. A pivotal point in Hevea evolution was the emergence of REF1, which is located on the surface of large rubber particles that account for 93% of rubber in the latex (despite constituting only 6% of total rubber particles, large and small). The stringent control of ethylene synthesis under active ethylene signalling and response in laticifers resolves a longstanding mystery of ethylene stimulation in rubber production. Our study, which includes the re-sequencing of five other Hevea cultivars and extensive RNA-seq data, provides a valuable resource for functional genomics and tools for breeding elite Hevea cultivars.


Subject(s)
Ethylenes/pharmacology , Genome, Plant , Hevea/genetics , Hevea/metabolism , Plant Growth Regulators/pharmacology , Rubber/metabolism , Adaptation, Biological
14.
New Phytol ; 206(2): 709-25, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25581169

ABSTRACT

In Hevea brasiliensis, an alkaline/neutral invertase (A/N-Inv) is responsible for sucrose catabolism in latex (essentially the cytoplasm of rubber-producing laticifers, the source of natural rubber) and implicated in rubber yield. However, neither the gene encoding this enzyme nor its molecular and biochemical properties have been well documented. Three Hevea A/N-Inv genes, namely HbNIN1, 2 and 3, were first cloned and characterized in planta and in Escherichia coli. Cellular localizations of HbNIN2 mRNA and protein were probed. From latex, active A/N-Inv proteins were purified, identified, and explored for enzymatic properties. HbNIN2 was identified as the major A/N-Inv gene functioning in latex based on its functionality in E. coli, its latex-predominant expression, the conspicuous localization of its mRNA and protein in the laticifers, and its expressional correlation with rubber yield. An active A/N-Inv protein was partially purified from latex, and determined as HbNIN2. The enhancement of HbNIN2 enzymatic activity by pyridoxal is peculiar to A/N-Invs in other plants. We conclude that HbNIN2, a cytosolic A/N-Inv, is responsible for sucrose catabolism in rubber laticifers. The results contribute to the studies of sucrose catabolism in plants as a whole and natural rubber synthesis in particular.


Subject(s)
Hevea/enzymology , Sucrose/metabolism , beta-Fructofuranosidase/metabolism , Amino Acid Sequence , Cytosol/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hevea/cytology , Hevea/genetics , Latex/metabolism , Molecular Sequence Data , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stems/cytology , Plant Stems/enzymology , Plant Stems/genetics , Sequence Alignment , beta-Fructofuranosidase/genetics
15.
FEBS J ; 281(1): 291-305, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24279382

ABSTRACT

Sucrose synthase (Sus, EC 2.4.1.13) is widely recognized as a key enzyme in sucrose metabolism in plants. However, nothing is known about this gene family in Hevea brasiliensis (para rubber tree). Here, we identified six Sus genes in H. brasiliensis that comprise the entire Sus family in this species. Analysis of the gene structure and phylogeny of the Sus genes demonstrates evolutionary conservation in the Sus families across Hevea and other plant species. The expression of Sus genes was investigated via Solexa sequencing and quantitative PCR in various tissues, at various phases of leaf development, and under abiotic stresses and ethylene treatment. The Sus genes exhibited distinct but partially redundant expression profiles. Each tissue has one abundant Sus isoform, with HbSus3, 4 and 5 being the predominant isoforms in latex (cytoplasm of rubber-producing laticifers), bark and root, respectively. HbSus1 and 6 were barely expressed in any tissue examined. In mature leaves (source), all HbSus genes were expressed at low levels, but HbSus3 and 4 were abundantly expressed in immature leaves (sink). Low temperature and drought treatments conspicuously induced HbSus5 expression in root and leaf, suggesting a role in stress responses. HbSus2 and 3 transcripts were decreased by ethylene treatment, consistent with the reduced sucrose-synthesizing activity of Sus enzymes in the latex in response to ethylene stimulation. Our results are beneficial to further determination of functions for the Sus genes in Hevea trees, especially roles in regulating latex regeneration.


Subject(s)
Gene Expression Regulation, Plant , Glucosyltransferases/chemistry , Glucosyltransferases/metabolism , Hevea/enzymology , Stress, Physiological , Sucrose/metabolism , Amino Acid Sequence , Cloning, Molecular , Glucosyltransferases/genetics , Hevea/genetics , Latex/chemistry , Latex/metabolism , Molecular Sequence Data , Multigene Family , Phylogeny , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Real-Time Polymerase Chain Reaction , Sequence Homology, Amino Acid
16.
J Water Health ; 8(3): 593-600, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20375488

ABSTRACT

Community diversity and abundance of biofilms from a full-scale drinking water distribution system in Shanghai were characterized by denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA sequences and heterotrophic plate count (HPC), respectively. Bacteria affiliated to the Beta- and Gamma-Proteobacteria were dominating in both in-situ and HPC-culturable bacterial communities. Other bacteria present included members of Alphaproteobacteria, Bacteroides, Actinobacteria, Nitrospirae and Firmicutes. Acidovorax, Ralstonia and Acinetobacter were common species in biofilms. Klebsiella pneumoniae and Enterobacter sp. were detected in the local distribution system. Dissolved organic carbon (DOC), residual disinfectant and temperature were the most important factors influencing both bacterial abundance and composition. HPC for biofilm sample was not correlated with its community diversity.


Subject(s)
Bacteria/isolation & purification , Biofilms , Water Microbiology , Water Supply , Bacteria/classification , Biodiversity , China , Colony Count, Microbial , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Electrophoresis, Gel, Two-Dimensional , Humans , Phylogeny , Polymerase Chain Reaction
17.
Huan Jing Ke Xue ; 30(6): 1649-52, 2009 Jun 15.
Article in Chinese | MEDLINE | ID: mdl-19662845

ABSTRACT

The growth of microbe and formation of biofilm in water distribution system were important factors affecting the security of water quality. The number of ammonia-oxidizing bacteria (AOB) in biofilm of a chloraminated drinking water distribution system in Shanghai was detected by MPN-Griess method, and the relations among AOB, nitrification and chloraminated disinfection were analyzed. Meanwhile, the effects of AOB on chloraminated disinfection fastness and attenuation by simulation experiment were studied. The result indicated that the number of ammonia-oxidizing bacteria in pipe biofilm was between 1.0 x 10(2)-4.3 x 10(5) MPN/g dry biofilm. Correlation coefficients of AOB with ammonia, nitrite and nitrate were -0.563, 0.603 and -0.563. Correlation coefficients of AOB with total chlorine and mono-chloramine were -0.659 and -0.571. Fastness of AOB to chloramine was higher than heterotrophic bacteria and AOB can deplete more chloramine than HPC.


Subject(s)
Chloramines/chemistry , Disinfection/methods , Nitrosomonas/growth & development , Nitrosomonas/metabolism , Water Microbiology , Ammonia/metabolism , Biofilms , Colony Count, Microbial , Water Purification/methods , Water Supply/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...