Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 210: 108642, 2024 May.
Article in English | MEDLINE | ID: mdl-38643538

ABSTRACT

Calmodulin-like proteins (CMLs) are unique Ca2+ sensors and play crucial roles in response to abiotic stress in plants. A salt-repressed PvCML9 from halophyte seashore paspalum (Paspalum vaginatum O. Swartz) was identified. PvCML9 was localized in the cytoplasm and nucleus and highly expressed in roots and stems. Overexpression of PvCML9 led to reduced salt tolerance in rice and seashore paspalum, whereas downregulating expression of PvCML9 showed increased salt tolerance in seashore paspalum as compared with the wild type (WT), indicating that PvCML9 regulated salt tolerance negatively. Na+ and K+ homeostasis was altered by PvCML9 expression. Lower level of Na+/K+ ratio in roots and shoots was maintained in PvCML9-RNAi lines compared with WT under salt stress, but higher level in overexpression lines. Moreover, higher levels of SOD and CAT activities and proline accumulation were observed in PvCML9-RNAi lines compared with WT under salt stress, but lower levels in overexpression lines, which altered ROS homeostasis. Based on the above data, mutation of its homolog gene OsCML9 in rice by CRISPR/Cas9 was performed. The mutant had enhanced salt tolerance without affecting rice growth and development, suggesting that OsCML9 gene is an ideal target gene to generate salt tolerant cultivars by genome editing in the future.


Subject(s)
Calmodulin , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Salt Tolerance , Plant Proteins/metabolism , Plant Proteins/genetics , Salt Tolerance/genetics , Oryza/genetics , Oryza/metabolism , Calmodulin/metabolism , Calmodulin/genetics , Potassium/metabolism , Plants, Genetically Modified , Sodium/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Homeostasis
2.
Adv Mater ; 36(5): e2305857, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37640560

ABSTRACT

Neuromorphic devices can help perform memory-heavy tasks more efficiently due to the co-localization of memory and computing. In biological systems, fast dynamics are necessary for rapid communication, while slow dynamics aid in the amplification of signals over noise and regulatory processes such as adaptation- such dual dynamics are key for neuromorphic control systems. Halide perovskites exhibit much more complex phenomena than conventional semiconductors due to their coupled ionic, electronic, and optical properties which result in modulatable drift, diffusion of ions, carriers, and radiative recombination dynamics. This is exploited to engineer a dual-emitter tandem device with the requisite dual slow-fast dynamics. Here, a perovskite-organic tandem light-emitting diode (LED) capable of modulating its emission spectrum and intensity owing to the ion-mediated recombination zone modulation between the green-emitting quasi-2D perovskite layer and the red-emitting organic layer is introduced. Frequency-dependent response and high dynamic range memory of emission intensity and spectra in a LED are demonstrated. Utilizing the emissive read-out, image contrast enhancement as a neuromorphic pre-processing step to improve pattern recognition capabilities is illustrated. As proof of concept using the device's slow-fast dynamics, an inhibition of the return mechanism is physically emulated.

3.
Int J Mol Sci ; 23(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35955559

ABSTRACT

Litchi (Litchi chinensis Sonn.) is an important subtropical and tropical evergreen fruit tree that is seriously affected by chilling stress. In order to identify genes that may be involved in the response to chilling in litchi, we investigate the physiological and biochemical changes under chilling stress and construct 12 RNA-Seq libraries of leaf samples at 0, 4, 8, and 12 days of chilling. The results show that antioxidant enzymes are activated by chilling treatments. Comparing the transcriptome data of the four time points, we screen 2496 chilling-responsive genes (CRGs), from which we identify 63 genes related to the antioxidant system (AO-CRGs) and 54 ABA, 40 IAA, 37 CTK, 27 ETH, 21 BR, 13 GA, 35 JA, 29 SA, and 4 SL signal transduction-related genes. Expression pattern analysis shows that the expression trends of the 28 candidate genes detected by qRT-PCR are similar to those detected by RNA-Seq, indicating the reliability of our RNA-Seq data. Partial Least Squares Structural Equation Modeling (PLS-SEM) analysis of the RNA-Seq data suggests a model for the litchi plants in response to chilling stress that alters the expression of the plant hormone signaling-related genes, the transcription factor-encoding genes LcICE1, LcCBFs, and LcbZIPs, and the antioxidant system-related genes. This study provides candidate genes for the future breeding of litchi cultivars with high chilling resistance, and elucidates possible pathways for litchi in response to chilling using transcriptomic data.


Subject(s)
Litchi , Antioxidants/metabolism , Gene Expression Regulation, Plant , Litchi/genetics , Litchi/metabolism , Plant Breeding , Plant Growth Regulators/metabolism , Reproducibility of Results , Transcriptome
4.
Front Plant Sci ; 13: 886131, 2022.
Article in English | MEDLINE | ID: mdl-35615126

ABSTRACT

Litchi is an important evergreen fruit tree. Floral formation in litchi is induced by low temperatures (LTs). However, unstable flowering is a challenge for litchi production in times of global warming and climate change. Previous studies have shown that the methyl viologen dichloride hydrate-generated reactive oxygen species (ROS) could promote flowering. Leaves in the panicles may affect the development of the inflorescence in litchi under high-temperature condition. In this study, potted litchi trees were transferred to growth chambers at LT and high temperature (HT). From a previous dataset of the RNA sequencing of the ROS-treated rudimentary leaves, a NAC transcription factor-encoding gene LcNAC13 was identified. By genetic transformation of LcNAC13 to Arabidopsis thaliana and tobacco, it was found that the ROS-induced senescence of the leaves was accelerated. Silencing LcNAC13 by virus-induced gene silencing (VIGS) delayed ROS-dependent senescence. Our results suggested that LcNAC13 regulates rudimentary leaf senescence. Our study provided a new target gene for the future molecular breeding of new cultivars that could flower under global warming conditions.

5.
Front Plant Sci ; 13: 819188, 2022.
Article in English | MEDLINE | ID: mdl-35283888

ABSTRACT

Litchi is an important Sapindaceae fruit tree. Flowering in litchi is triggered by low temperatures in autumn and winter. It can be divided into early-, medium-, and late-flowering phenotypes according to the time for floral induction. Early-flowering varieties need low chilling accumulation level for floral induction, whereas the late-flowering varieties require high chilling accumulation level. In the present study, RNA-Seq of 87 accessions was performed and transcriptome-based genome-wide association studies (GWAS) was used to identify candidate genes involved in chilling accumulation underlying the time for floral induction. A total of 98,155 high-quality single-nucleotide polymorphism (SNP) sites were obtained. A total of 1,411 significantly associated SNPs and 1,115 associated genes (AGs) were identified, of which 31 were flowering-related, 23 were hormone synthesis-related, and 27 were hormone signal transduction-related. Association analysis between the gene expression of the AGs and the flowering phenotypic data was carried out, and differentially expressed genes (DEGs) in a temperature-controlled experiment were obtained. As a result, 15 flowering-related candidate AGs (CAGs), 13 hormone synthesis-related CAGs, and 11 hormone signal transduction-related CAGs were further screened. The expression levels of the CAGs in the early-flowering accessions were different from those in the late-flowering ones, and also between the flowering trees and non-flowering trees. In a gradient chilling treatment, flowering rates of the trees and the CAGs expression were affected by the treatment. Our present work for the first time provided candidate genes for genetic regulation of flowering in litchi using transcriptome-based GWAS.

6.
Microbiol Spectr ; 9(3): e0059721, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34817280

ABSTRACT

Early and effective identification of severe coronavirus disease 2019 (COVID-19) may allow us to improve the outcomes of associated severe acute respiratory illness with fever and respiratory symptoms. This study analyzed plasma concentrations of heat shock protein gp96 in nonsevere (including mild and typical) and severe (including severe and critical) patients with COVID-19 to evaluate its potential as a predictive and prognostic biomarker for disease severity. Plasma gp96 levels that were positively correlated with interleukin-6 (IL-6) levels were significantly elevated in COVID-19 patients admitted to the hospital but not in non-COVID-19 patients with less severe respiratory impairment. Meanwhile, significantly higher gp96 levels were observed in severe than nonsevere patients. Moreover, the continuous decline of plasma gp96 levels predicted disease remission and recovery, whereas its persistently high levels indicated poor prognosis in COVID-19 patients during hospitalization. Finally, monocytes were identified as the major IL-6 producers under exogenous gp96 stimulation. Our results demonstrate that plasma gp96 may be a useful predictive and prognostic biomarker for disease severity and outcome of COVID-19. IMPORTANCE Early and effective identification of severe COVID-19 may allow us to improve the outcomes of associated severe acute respiratory illness with fever and respiratory symptoms. Some heat shock proteins (Hsps) are released during oxidative stress, cytotoxic injury, and viral infection and behave as danger-associated molecular patterns (DAMPs). This study analyzed plasma concentrations of Hsp gp96 in nonsevere and severe patients with COVID-19. Significantly higher plasma gp96 levels were observed in severe than those in nonsevere patients, and its persistently high levels indicated poor prognosis in COVID-19 patients. The results demonstrate that plasma gp96 may be a useful predictive and prognostic biomarker for disease severity and outcome of COVID-19.


Subject(s)
Biomarkers/blood , COVID-19 Testing/methods , COVID-19/diagnosis , Membrane Glycoproteins/blood , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , Cytokines/blood , Female , Humans , Interleukin-6/blood , Male , Middle Aged , Monocytes , SARS-CoV-2/isolation & purification , Young Adult
7.
Genes (Basel) ; 11(3)2020 03 18.
Article in English | MEDLINE | ID: mdl-32197528

ABSTRACT

Litchi is an important subtropical fruit tree that requires an appropriately low temperature to trigger floral initiation. Our previous studies have shown that reactive oxygen species (ROS) are involved in litchi flowering. To identify oxidative stress-induced flowering related genes in leaves, 'Nuomici' potted trees were grown at medium low-temperature conditions (18/13 °C for day/night, medium-temperature). The trees were treated with the ROS generator methyl viologen dichloride hydrate (MV) as the MV-generated ROS treatment (MM, medium-temperature plus MV) and water as the control treatment (M, medium-temperature plus water). Sixteen RNA-sequencing libraries were constructed, and each library generated more than 5,000,000 clean reads. A total of 517 differentially expressed genes (DEGs) were obtained. Among those DEGs, plant hormone biosynthesis and signal transduction genes, ROS-specific transcription factors, such as AP2/ERF and WRKY genes, stress response genes, and flowering-related genes FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2 (FT2) were significantly enriched. Then, as a confirmatory experiment, the potted trees were uniformly sprayed with MV, N,N'-dimethylthiourea (DMTU, ROS scavenger) plus MV, and water at medium-temperature. The results showed that the MV-generated ROS promoted flowering and changed related gene expression, but these effects were repressed by DMTU treatment. The results of our studies indicate that ROS could promote flowering and partly bypass chilling for litchi flowering.


Subject(s)
Flowers/genetics , Gene Regulatory Networks , Litchi/genetics , Oxidative Stress , Transcriptome , Flowers/growth & development , Flowers/metabolism , Gene Expression Regulation, Plant , Litchi/growth & development , Litchi/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Signal Transduction
8.
BMC Genomics ; 20(1): 127, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30744557

ABSTRACT

BACKGROUND: Warm winter and hot spring attributed to global warming affected floral development and may induce floral abortion, resulted in poor flowering in litchi. To identify genes potentially involved in litchi floral abortion, six RNA-sequencing (RNA-Seq) libraries of the developing panicles (DPs) under low temperature (LT) conditions and the shrinking panicles (SPs) under high temperature (HT) conditions were constructed. RESULTS: 3.07-8.97 × 106 clean reads were generated. Digital expression of the DPs with that of the SPs was compared. As a result, 1320 up-regulated and 981 down-regulated differentially expressed genes (DEGs) were identified. From the enriched GO-term, 54 temperature responsive DEGs, 23 hormone homeostasis- or biosynthesis-related DEGs, 137 hormone signal transduction or responsive DEGs, and 18 flowering-related DEGs were identified. Partial Least Squares Structural Equation Modeling (PLS-SEM) analysis indicated that the effects of hormone-related DEGs on NACs, MYBs, WRKYs were stronger than that on flowering-related DEGs. Expression pattern analysis of the inflorescence in 'Nuomici' and 'Huaizhi' under LT and HT conditions showed that genes homologous to AIL6 (LcAIL6), LHY (LcLHY), MED16 (LcMED16), SKIP20 (LcSKIP20), POD20 (LcPOD20) in the two cultivars had similar expression trends. CONCLUSION: This study elucidated the transcriptome in the HT-induced floral abortion and identified key genes involved in the process. NACs, MYBs, WRKYs may act as central players involved in the HT-induced floral abortion underlying hormonal control. Increased transcript in LcLHY, LcMED16, LcSKIP20, LcPOD20 and decreased transcript in LcAIL6 might be related to the inhibition of floral development. Our studies provided potential genes for the future molecular breeding of new cultivars that can reduce floral abortion under warm climates, and a novel clue to reveal the relationship of biological processes based on the RNA-seq data using PLS-SEM.


Subject(s)
Flowers/growth & development , Gene Expression Profiling , Litchi/growth & development , Litchi/genetics , Temperature , Climate Change , Gene Ontology , Litchi/metabolism , Plant Growth Regulators/metabolism , Sequence Analysis, RNA
9.
Genes (Basel) ; 10(2)2019 02 01.
Article in English | MEDLINE | ID: mdl-30717231

ABSTRACT

Warm winters and hot springs may promote panicle leaf growing and repress floral development. To identify genes potentially involved in litchi panicle leaf senescence, eight RNA-sequencing (RNA-Seq) libraries of the senescing panicle leaves under low temperature (LT) conditions and the developing panicle leaves under high temperature (HT) conditions were constructed. For each library, 4.78⁻8.99 × 106 clean reads were generated. Digital expression of the genes was compared between the senescing and developing panicle leaves. A total of 6477 upregulated differentially expressed genes (DEGs) (from developing leaves to senescing leaves), and 6318 downregulated DEGs were identified, 158 abscisic acid (ABA)-, 68 ethylene-, 107 indole-3-acetic acid (IAA)-, 27 gibberellic acid (GA)-, 68 cytokinin (CTK)-, 37 salicylic acid (SA)-, and 23 brassinolide (BR)-related DEGs. Confirmation of the RNA-Seq data by quantitative real-time PCR (qRT-PCR) analysis suggested that expression trends of the 10 candidate genes using qRT-PCR were similar to those revealed by RNA-Seq, and a significantly positive correlation between the obtained data from qRT-PCR and RNA-Seq were found, indicating the reliability of our RNA-Seq data. The present studies provided potential genes for the future molecular breeding of new cultivars that can induce panicle leaf senescence and reduce floral abortion under warm climates.


Subject(s)
Cold-Shock Response , Genes, Plant , Litchi/genetics , Plant Development , Gene Expression Regulation, Plant , Litchi/growth & development , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Leaves/metabolism , Transcriptome
10.
Nat Plants ; 4(10): 784-791, 2018 10.
Article in English | MEDLINE | ID: mdl-30250279

ABSTRACT

Fleshy fruits using ethylene to regulate ripening have developed multiple times in the history of angiosperms, presenting a clear case of convergent evolution whose molecular basis remains largely unknown. Analysis of the fruitENCODE data consisting of 361 transcriptome, 71 accessible chromatin, 147 histone and 45 DNA methylation profiles reveals three types of transcriptional feedback circuits controlling ethylene-dependent fruit ripening. These circuits are evolved from senescence or floral organ identity pathways in the ancestral angiosperms either by neofunctionalisation or repurposing pre-existing genes. The epigenome, H3K27me3 in particular, has played a conserved role in restricting ripening genes and their orthologues in dry and ethylene-independent fleshy fruits. Our findings suggest that evolution of ripening is constrained by limited hormone molecules and genetic and epigenetic materials, and whole-genome duplications have provided opportunities for plants to successfully circumvent these limitations.


Subject(s)
Fruit/genetics , Genome, Plant/genetics , Biological Evolution , Chromatin/metabolism , DNA Methylation , Ethylenes/metabolism , Gene Expression Profiling , Histones/metabolism , Solanum lycopersicum/growth & development , MADS Domain Proteins/metabolism , Malus/growth & development , Plant Growth Regulators/metabolism , Pyrus/growth & development
11.
Hortic Res ; 5: 23, 2018.
Article in English | MEDLINE | ID: mdl-29736248

ABSTRACT

Litchi is one of the most important subtropical evergreen fruit trees in southern Asia. Previous studies indicated that high-temperature conditions encourage growth of rudimentary leaves in panicles and suppress flowering. We have demonstrated that methyl viologen dichloride hydrate (MV) and sodium nitroprusside (SNP) promoted flowering in litchi partially by inhibiting the growth of rudimentary leaves via reactive oxygen species (ROS) and nitric oxide (NO). In the present study, we examined the microstructure and ultrastructure, programmed cell death (PCD) ratio, nuclei morphology of the rudimentary leaves, and the expression of senescence-related genes after the treatment with ROS or NO. The results showed that chromatins of the ROS- or NO-treated cells in the rudimentary leaves were condensed. Fusion of the cytoplasm-digesting vesicles with the vacuole and degradation of cytoplasm forming scattered debris were found in those of the treated cells. Treatment with ROS or NO increased the cell PCD ratio. Morphology of the nuclei stained by propidium iodide (PI) showed that nuclei shape became irregular after the ROS or NO treatment. Further, the expression levels of LcRboh, LcMC-1-like, and LcPirin were higher in the ROS- and NO-treated rudimentary leaves than those in the control ones, suggesting that these genes may be involved in the ROS and NO-induced senescence and abscission of the rudimentary leaves in litchi. Our results suggested that ROS and NO play an important role in inducing the senescence of the rudimentary leaves, and ROS- and NO-induced PCD may be involved in the regulation of the rudimentary leaf growth in litchi.

12.
Sci Rep ; 7(1): 10183, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28860553

ABSTRACT

Litchi is an important woody fruit tree. Floral initiation in litchi is triggered by low temperatures. However, defective flowering is a major challenge for litchi production in times of climate change and global warming. Previous studies have shown that the reactive oxygen species (ROS) generated by methyl viologen dichloride hydrate (MV) promotes flowering. In this study, potted trees were transferred to growth chambers for low-temperature (LT), medium-temperature (MT), and high-temperature (HT) treatments. Trees at MT were subjected to ROS treatment to promote flowering, and those at LT were induced to flower. RNA-sequencing was applied to obtain a global transcriptome of the apical meristem and reveal potential gene networks controlling the transformation from vegetative meristems (VM) into inflorescence meristems (IM). We assembled 73,117 unigenes with a mean size of 790 bp and 11741 unigenes were identified as both chilling and ROS responsive genes (CRRGs), of which 48 were identified as flowering-related CRRGs, 59 were plant hormone signal transduction CRRGs, and 146 were plant hormone biosynthesis-related CRRGs. Genes co-expression network analysis indicated inner relationships, suggesting that ROS and chilling promotes the VM to IM transition through a regulatory gene network of transcription factors, hormones, and flowering regulators.


Subject(s)
Flowers/growth & development , Gene Regulatory Networks , Litchi/genetics , Sequence Analysis, RNA/methods , Cold Temperature , Flowers/genetics , Flowers/physiology , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Global Warming , Litchi/physiology , Meristem/genetics , Reactive Oxygen Species/metabolism , Stress, Physiological
13.
Plant Cell Rep ; 36(1): 89-102, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27682163

ABSTRACT

KEY MESSAGE: LcMCII - 1 is a type II metacaspase. Over-expression of LcMCII- 1 in Arabidopsis promoted ROS-dependent and natural senescence. Virus-induced LcMCII- 1 silencing delayed the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis . Litchi is an evergreen woody fruit tree that is widely cultivated in subtropical and tropical regions. Its floral buds are mixed with axillary or apical panicle primordia, leaf primordia and rudimentary leaves. A low spring temperature is vital for litchi production as it promotes the abscission of the rudimentary leaves, which could otherwise prevent panicle development. Hence, climate change could present additional challenges for litchi production. We previously reported that reactive oxygen species (ROS) can substitute low-temperature treatment to induce the senescence of rudimentary leaves. We have now identified from RNA-Seq data a litchi type II metacaspase gene, LcMCII-1, that is responsive to ROS. Silencing LcMCII-1 by virus-induced gene silencing delayed ROS-dependent senescence. The ectopic over-expression of LcMCII-1 in transgenic Arabidopsis promoted ROS-dependent and natural senescence. Consistently, the transient expression of LcMCII-1 in tobacco leaf by agroinfiltration resulted in leaf yellowing. Our findings demonstrate that LcMCII-1 is positively involved in the regulation of rudimentary leaf senescence in litchi and provide a new target for the future molecular breeding of new cultivars that can set fruit in warmer climates.


Subject(s)
Litchi/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Arabidopsis/genetics , Cloning, Molecular , Cold Temperature , Gene Expression Regulation, Plant , Gene Silencing , Litchi/genetics , Phenotype , Phylogeny , Plant Leaves/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Protein Transport , Subcellular Fractions/metabolism , Nicotiana/genetics
14.
BMC Genomics ; 15: 805, 2014 Sep 20.
Article in English | MEDLINE | ID: mdl-25239404

ABSTRACT

BACKGROUND: Litchi is an evergreen woody tree widely cultivated in subtropical and tropical regions. Defective flowering is a major challenge for litchi production in time of climate change and global warming. Previous studies have shown that high temperature conditions encourage the growth of rudimentary leaves in panicles and suppress litchi flowering, while reactive oxygen species (ROS) generated by methyl viologen dichloride hydrate (MV) promote flowering and abortion of rudimentary leaves. To understand the molecular function of the ROS-induced abortion of rudimentary leaves in litchi, we sequenced and de novo assembled the litchi transcriptome. RESULTS: Our assembly encompassed 82,036 unigenes with a mean size of 710 bp, and over 58% (47,596) of unigenes showed significant similarities to known sequences in GenBank non-redundant (nr) protein database. 5,865 unigenes were found to be differentially expressed between ROS-treated and un-treated rudimentary leaves, and genes encoding signaling components of plant hormones such as ABA and ethylene were significantly enriched. CONCLUSION: Our transcriptome data represents the comprehensive collection of expressed sequence tags (ESTs) of litchi leaves, which is a vital resource for future studies on the genomics of litchi and other closely related species. The identified differentially expressed genes also provided potential candidates for functional analysis of genes involved in litchi flowering underlying the control of rudimentary leaves in the panicles.


Subject(s)
Genes, Plant , Litchi/genetics , Reactive Oxygen Species/metabolism , Databases, Nucleic Acid , Databases, Protein , Expressed Sequence Tags , Molecular Sequence Annotation , Paraquat/toxicity , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Transcriptome/drug effects
15.
Plant Cell Rep ; 32(9): 1361-72, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23636664

ABSTRACT

KEY MESSAGE: A suppression subtractive hybridization library was constructed using inflorescence primordia of 'Nuomici' litchi to identify EST clones responsive to MV-generated ROS. 93 ESTs could be aligned as unique gene sequences in the inflorescence primordia of litchi. Litchi is an evergreen woody tree widely cultivated in subtropical and tropical regions. However, defective flowering is a pending problem of litchi production. Our previous study indicated that reactive oxygen species (ROS) induced by methyl viologen dichloride hydrate (MV) promotes flowering in litchi. In the present study, a suppression subtractive hybridization (SSH) library was constructed using inflorescence primordia of 'Nuomici' with the aim to find out ROS responsive clones during floral differentiation. 1856 Expressed sequence tag (EST) clones were randomly selected. Clones carrying single exogenous fragments were screened by reverse northern analysis to identify those responsive to MV-generated ROS. A total of 783 differentially expressed EST clones were identified as MV responsive cDNA and were subjected to sequencing. Among them, 26 clones were represented more than three times. 783 clones were aligned to 93 unique gene sequences. The unique genes were classified into 9 categories. 16 % of them were involved in transport facilitation, 11 % in transcription regulation, 4 % in stress response, 9 % in carbohydrate metabolism, 1 % in secondary metabolism, 14 % in intracellular signaling, and 25 % in other metabolism, while 9 % were genes with unknown functions and 11 % were genes with no match in the database.


Subject(s)
Expressed Sequence Tags , Flowers/genetics , Litchi/genetics , Paraquat/pharmacology , Reactive Oxygen Species/metabolism , Flowers/physiology , Gene Expression Regulation, Plant , Gene Library , Litchi/physiology
16.
Plant Cell Environ ; 32(5): 509-19, 2009 May.
Article in English | MEDLINE | ID: mdl-19183289

ABSTRACT

Abscisic acid (ABA) regulates the plant's adaptive responses to abiotic stresses. Over-expression of the 9-cis-epoxycarotenoid dioxygenase gene (SgNCED1) in the transgenic tobaccos increased ABA content and tolerance to drought and salt stresses. H2O2 and nitric oxide (NO) contents were enhanced in guard cells and mesophyll cells of the transgenic plants, accompanied with increased transcripts and activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR). The enhancements of H2O2 and NO and transcripts and activities of antioxidant enzymes in the transgenic plants were blocked by pre-treatments with inhibitor of ABA biosynthesis, scavengers of H2O2 and NO, and inhibitors of NADPH oxidase and NO synthase-like (NOS-like). The elevated production of NO in the transgenic plants was blocked by scavenger of H2O2 and inhibitors of NADPH oxidase, whereas H2O2 level was not affected by scavenger of NO and inhibitor of NOS-like, indicating that H2O2 is essential for the elevated production of NO. The results demonstrate that the increased drought and salt tolerance in the transgenic plants is associated with ABA-induced production of H2O2 via NADPH oxidase and NO via NOS-like, which sequentially induce transcripts and activities of SOD, CAT, APX and GR.


Subject(s)
Abscisic Acid/metabolism , Hydrogen Peroxide/metabolism , Nicotiana/enzymology , Nitric Oxide/metabolism , Oxygenases/metabolism , Antioxidants/metabolism , Ascorbate Peroxidases , Catalase/metabolism , Dioxygenases , Droughts , Gene Expression Regulation, Plant , Glutathione Reductase/metabolism , Oxidative Stress , Peroxidases/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , RNA, Plant/metabolism , Salt-Tolerant Plants , Superoxide Dismutase/metabolism , Nicotiana/genetics
17.
Plant Physiol Biochem ; 43(10-11): 955-62, 2005.
Article in English | MEDLINE | ID: mdl-16310370

ABSTRACT

Rice (Oryza sativa L.) roots were fed with L-ascorbic acid (AsA) and its putative precursors to observe AsA and oxalate concentrations and the resistance of rice to chilling, water stress, and Al toxicity. AsA concentration was significantly enhanced in both shoots and roots of rice seedlings by feeding with D-glucose or L-galactono-gamma-lactone. AsA or L-galactono-gamma-lactone treatment increased accumulation of oxalate mainly in soluble form, while these treatments decreased electrolyte leakage from root cells, H2O2 and lipid peroxidation level in rice seedlings subjected to chilling, water stress, and Al toxicity. They also alleviated the inhibition on root growth by Al. These results indicated that AsA and its immediate precursor protected plants against the oxidative damages induced by various stresses. However, 0.5 mM AsA and 10 mM L-galactono-gamma-lactone treatment had no significant effect on superoxide dismutase and catalase activity and ascorbate-peroxidase activities. Enhanced Al resistance caused by AsA and L-galactono-gamma-lactone may possibly be resulted from increased level of oxalate, which acts as metal chelator. Thus it is proposed that manipulation of AsA and oxalate biosynthesis through enhancement of L-galactono-gamma-lactone level in plants could be a strategy for improving abiotic stress tolerance.


Subject(s)
Ascorbic Acid/biosynthesis , Oryza/metabolism , Oxalates/metabolism , Oxidative Stress , Aluminum/toxicity , Ascorbic Acid/metabolism , Catalase/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Oryza/enzymology , Oryza/physiology , Superoxide Dismutase/metabolism , Water
18.
J Exp Bot ; 56(422): 3223-8, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16263901

ABSTRACT

Previous studies suggest that abscisic acid (ABA) stimulates the activities of antioxidant enzymes under normal and chilling temperature and enhanced chilling resistance in Stylosanthes guianensis. The objective of this study was to test whether nitric oxide (NO) is involved in the ABA-induced activities of the antioxidant enzymes in Stylosanthes guianensis due to its nature as a second messenger in stress responses. Plants were treated with NO donors, ABA, ABA in combination with NO scavengers or the nitric oxide synthase (NOS) inhibitor and their effects on the activity of antioxidant enzymes and NO production were compared. The results showed that ABA increased the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The effect of ABA on antioxidant enzyme activities was suppressed by the NOS inhibitor, N(omega)-nitro-L-arginine (L-NNA), and the NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl3-oxide (PTIO). NO content increased after 5 h of ABA treatment. The NO-scavenger, PTIO, and the NOS-inhibitor, L-NNA, inhibited the accumulation of NO in ABA-treated Stylosanthes guianensis. NO donor treatment enhanced the activities of SOD, CAT, and APX. The results suggested that NO was involved in the ABA-induced activities of SOD, CAT, and APX in Stylosanthes guianensis. ABA triggered NO production that may lead to the stimulation of antioxidant enzyme activities.


Subject(s)
Abscisic Acid/pharmacology , Antioxidants/metabolism , Fabaceae/enzymology , Nitric Oxide/physiology , Ascorbate Peroxidases , Catalase/metabolism , Cyclic N-Oxides/pharmacology , Enzyme Inhibitors/pharmacology , Fabaceae/drug effects , Free Radical Scavengers/pharmacology , Imidazoles/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Donors/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Nitroarginine/pharmacology , Peroxidases/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...