Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35159820

ABSTRACT

The development of wearable systems stimulate the exploration of flexible broadband photodetectors with high responsivity and stability. In this paper, we propose a facile liquid-exfoliating method to prepare SnS2 nanosheets with high-quality crystalline structure and optoelectronic properties. A flexible photodetector is fabricated using the SnS2 nanosheets with graphene-poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine (PTAA) hybrid structure. The liquid-exfoliated SnS2 nanosheets enable the photodetection from ultraviolet to near infrared with high responsivity and detectivity. The flexible broadband photodetector demonstrates a maximum responsivity of 1 × 105 A/W, 3.9 × 104 A/W, 8.6 × 102 A/W and 18.4 A/W under 360 nm, 405 nm, 532 nm, and 785 nm illuminations, with specific detectivity up to ~1012 Jones, ~1011 Jones, ~109 Jones, and ~108 Jones, respectively. Furthermore, the flexible photodetector exhibits nearly invariable performance over 3000 bending cycles, rendering great potentials for wearable applications.

2.
Nanoscale Adv ; 2(3): 1059-1065, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-36133069

ABSTRACT

A phototransistor based on a hybrid of graphene and BP nanosheets with a facile fabrication method and remarkable performance is presented. Unlike previously reported single BP flake-based devices, this phototransistor employs diverse BP nanosheets with different sizes and layer numbers. The wet transfer process of graphene is exploited to integrate the liquid-exfoliated BP nanosheets into the device smoothly. Due to the diversity of BP nanosheets, the device demonstrates a broadband photo-response in the spectrum from 360 nm to 785 nm. The photo-response mechanism is revealed to be the photogating effect caused by the discrete BP nanosheets adsorbed on graphene. The phototransistor has a responsivity of 7.7 × 103 A W-1 in the near-UV region with a wide conductive channel of 200 µm. Moreover, the simplified wet transfer process of graphene leaves a self-encapsulated layer of PMMA on the as-prepared device, inducing a good atmospheric stability in the device. This report provides a valid, implantable, and facile strategy to apply BP nanosheets in a broadband, high-performing and air-stable photodetector.

SELECTION OF CITATIONS
SEARCH DETAIL
...