Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bone Joint Res ; 12(8): 455-466, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37524338

ABSTRACT

Aims: Rotator cuff muscle atrophy and fatty infiltration affect the clinical outcomes of rotator cuff tear patients. However, there is no effective treatment for fatty infiltration at this time. High-intensity interval training (HIIT) helps to activate beige adipose tissue. The goal of this study was to test the role of HIIT in improving muscle quality in a rotator cuff tear model via the ß3 adrenergic receptor (ß3AR). Methods: Three-month-old C57BL/6 J mice underwent a unilateral rotator cuff injury procedure. Mice were forced to run on a treadmill with the HIIT programme during the first to sixth weeks or seventh to 12th weeks after tendon tear surgery. To study the role of ß3AR, SR59230A, a selective ß3AR antagonist, was administered to mice ten minutes before each exercise through intraperitoneal injection. Supraspinatus muscle, interscapular brown fat, and inguinal subcutaneous white fat were harvested at the end of the 12th week after tendon tear and analyzed biomechanically, histologically, and biochemically. Results: Histological analysis of supraspinatus muscle showed that HIIT improved muscle atrophy, fatty infiltration, and contractile force compared to the no exercise group. In the HIIT groups, supraspinatus muscle, interscapular brown fat, and inguinal subcutaneous white fat showed increased expression of tyrosine hydroxylase and uncoupling protein 1, and upregulated the ß3AR thermogenesis pathway. However, the effect of HIIT was not present in mice injected with SR59230A, suggesting that HIIT affected muscles via ß3AR. Conclusion: HIIT improved supraspinatus muscle quality and function after rotator cuff tears by activating systemic sympathetic nerve fibre near adipocytes and ß3AR.

2.
Orthop J Sports Med ; 11(5): 23259671231170192, 2023 May.
Article in English | MEDLINE | ID: mdl-37223073

ABSTRACT

Background: Fatty infiltration (FI) of the rotator cuff muscles is correlated with shoulder function and retear rates after rotator cuff repair. High-intensity interval training (HIIT) induces beige adipose tissue to express more uncoupling protein 1 (UCP1) to consume lipids. The beta-3 adrenergic receptor (ß3AR) is located on adipocyte membrane and induces thermogenesis. Purpose: To test the role of HIIT in improving muscle quality and contractility in a delayed rotator cuff repair mouse model via ß3AR. Study Design: Controlled laboratory study. Methods: Three-month-old C57BL/6J mice underwent a unilateral supraspinatus (SS) tendon transection with a 6-week delayed tendon repair. Mice ran on a treadmill with the HIIT program for 6 weeks after tendon transection or after delayed repair. To study the role of ß3AR, SR59230A, a selective ß3AR antagonist, was administered to mice 10 minutes before each exercise through intraperitoneal injection. The SS, interscapular brown adipose tissue (iBAT), and subcutaneous inguinal white adipose tissue (ingWAT) were harvested at the end of the 12th week after tendon transection and were analyzed by histology and Western blotting. Tests were performed to assess muscle contractility of the SS. Results: Histologic analysis of SS showed that HIIT prevented and reversed muscle atrophy and FI. The contractile tests showed higher contractility of the SS in the HIIT groups than in the no-exercise group. In the HIIT groups, SS, iBAT, and ingWAT all showed increased expression of tyrosine hydroxylase, UCP1, and upregulated ß3AR thermogenesis pathway. However, SR59230A inhibited HIIT, suggesting that the effect of HIIT depends on ß3AR. Conclusion: HIIT improved SS quality and function after delayed rotator cuff repair through a ß3AR-dependent mechanism. Clinical Relevance: HIIT may serve as a new rehabilitation method for patients with rotator cuff muscle atrophy and FI after rotator cuff repair to improve postoperative clinical outcomes.

3.
J Shoulder Elbow Surg ; 32(3): 500-511, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36442828

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a disease of joint degeneration and impaired function. Muscle atrophy, fatty infiltration, and fibrosis are degenerative features of muscle injury and predict poor outcomes in some degenerative and exercise-related injuries. Patients with glenohumeral joint OA usually have rotator cuff muscle degeneration, even though the rotator cuff is intact. However, the mechanism and correlation between OA and degeneration of muscles around joints are still unknown. METHODS: Forty-five 12-month-old C57BL/6J mice received a single injection of monoiodoacetic acid into the right glenohumeral joint. The sham group was injected with saline on the same day in the right glenohumeral joint. Three and 6 weeks after the operation, gait analysis was conducted to evaluate the function of the forelimb. Then, the shoulder joint and supraspinatus muscle were collected for histologic staining, reverse transcription quantitative polymerase chain reaction, and biomechanics test. Correlations between fat area fraction in muscle, percentage wet muscle weight change or Osteoarthritis Research Society International score, and gait analysis/muscle mechanics tests were assessed using Pearson's correlation coefficient or Spearman's correlation coefficient. RESULTS: Compared with the sham group, the monoiodoacetic acid group developed significant glenohumeral joint OA and the supraspinatus muscle developed significant fatty infiltration and muscle atrophy. Shoulder function correlated with glenohumeral joint OA/rotator cuff muscle severity, weight loss, and fatty infiltration. CONCLUSION: In mice, glenohumeral joint OA can lead to rotator cuff degeneration and inferior limb function. The small animal model could be a powerful tool to further study the potential mechanisms between glenohumeral OA and rotator cuff muscle degeneration.


Subject(s)
Osteoarthritis , Rotator Cuff Injuries , Shoulder Joint , Animals , Mice , Rotator Cuff/surgery , Iodoacetic Acid/toxicity , Mice, Inbred C57BL , Disease Models, Animal , Muscular Atrophy/pathology , Osteoarthritis/surgery , Forelimb/pathology
4.
Stem Cell Res Ther ; 13(1): 400, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35927702

ABSTRACT

BACKGROUND: Traumatic impacts to the articular joint surface are known to lead to cartilage degeneration, as in post-traumatic osteoarthritis (PTOA). Limited progress in the development of disease-modifying OA drugs (DMOADs) may be due to insufficient mechanistic understanding of human disease onset/progression and insufficient in vitro models for disease and therapeutic modeling. In this study, biomimetic hydrogels laden with adult human mesenchymal stromal cells (MSC) are used to examine the effects of traumatic impacts as a model of PTOA. We hypothesize that MSC-based, engineered cartilage models will respond to traumatic impacts in a manner congruent with early PTOA pathogenesis observed in animal models. METHODS: Engineered cartilage constructs were fabricated by encapsulating adult human bone marrow-derived mesenchymal stem cells in a photocross-linkable, biomimetic hydrogel of 15% methacrylated gelatin and promoting chondrogenic differentiation for 28 days in a defined medium and TGF-ß3. Constructs were subjected to traumatic impacts with different strains or 10 ng/ml IL-1ß, as a common comparative method of modeling OA. Cell viability and metabolism, elastic modulus, gene expression, matrix protein production and activation of catabolic enzymes were assessed. RESULTS: Cell viability staining showed that traumatic impacts of 30% strain caused an appropriate level of cell death in engineered cartilage constructs. Gene expression and histo/immunohistochemical analyses revealed an acute decrease in anabolic activities, such as COL2 and ACAN expression, and a rapid increase in catabolic enzyme expression, e.g., MMP13, and inflammatory modulators, e.g., COX2. Safranin O staining and GAG assays together revealed a transient decrease in matrix production 24 h after trauma that recovered within 7 days. The decrease in elastic modulus of engineered cartilage constructs was coincident with GAG loss and mediated by the encapsulated cells. The acute and transient changes observed after traumatic impacts contrasted with progressive changes observed using continual IL-1ß treatment. CONCLUSIONS: Traumatic impacts delivered to engineered cartilage constructs induced PTOA-like changes in the encapsulated cells. While IL-1b may be appropriate in modeling OA pathogenesis, the results of this study indicate it may not be appropriate in understanding the etiology of PTOA. The development of a more physiological in vitro PTOA model may contribute to the more rapid development of DMOADs.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cells , Osteoarthritis , Adult , Animals , Cartilage/metabolism , Cartilage, Articular/metabolism , Cells, Cultured , Chondrogenesis/genetics , Humans , Hydrogels/pharmacology , Mesenchymal Stem Cells/metabolism , Osteoarthritis/metabolism
5.
Clin Chem ; 68(2): 332-343, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34942001

ABSTRACT

BACKGROUND: Although major advances have been made in the histopathological diagnosis of high-grade astrocytoma (HGA), methods for effective and noninvasive diagnosis remain largely unknown. Exosomes can cross the blood-brain barrier and are readily accessible in human biofluids, making them promising biomarkers for HGA. Circular RNAs (circRNAs) have potential as tumor biomarkers owing to their stability, conservation, and tissue specificity. However, the landscape and characteristics of exosome circRNAs in HGA remain to be studied. METHODS: CircRNA deep sequencing and bioinformatics approaches were used to generate a circRNA profiling database and analyze the features of HGA cell circRNAs and HGA cell-derived exosome circRNAs. Exosome circRNA expression in the serum and tissues of healthy individuals and patients with HGA was detected using reverse transcription-quantitative PCR. Additionally, the receiver operating characteristic curve and overall survival curves were analyzed. RESULTS: By investigating the characteristics of HGA cell-derived exosome circRNAs and HGA cell circRNAs, we observed that exosomes were more likely to enrich short-exon and suppressor circRNAs than HGA cells. Moreover, a serum exosome circRNA panel including hsa_circ_0075828, hsa_circ_0003828, and hsa_circ_0002976 could be used to screen for HGA, whereas a good prognosis panel comprised high concentrations of hsa_circ_0005019, hsa_circ_0000880, hsa_circ_0051680, and hsa_circ_0006365. CONCLUSIONS: This study revealed a comprehensive circRNA landscape in HGA exosomes and cells. The serum exosome circexosome circRNA panel and tissue circRNAs are potentially useful for HGA liquid biopsy and prognosis monitoring. Exosome circRNAs as novel targets should facilitate further biomarker discovery and aid in HGA diagnosis and therapy monitoring.


Subject(s)
Astrocytoma , Exosomes , Astrocytoma/diagnosis , Astrocytoma/genetics , Biomarkers, Tumor/genetics , Exosomes/genetics , Humans , RNA/genetics , RNA, Circular/genetics , Sequence Analysis, RNA
6.
Front Cell Neurosci ; 13: 327, 2019.
Article in English | MEDLINE | ID: mdl-31379511

ABSTRACT

Canonical epigenetic modifications, including DNA methylation, histone modification and chromatin remodeling, play a role in numerous life processes, particularly neurodevelopment. Epigenetics explains the development of cells in an organism with the same DNA sequence into different cell types with various functions. However, previous studies on epigenetics have only focused on the chromatin level. Recently, epigenetic modifications of RNA, which mainly include 6-methyladenosine (m6A), pseudouridine, 5-methylcytidine (m5C), inosine (I), 2'-O-ribosemethylation, and 1-methyladenosine (m1A), have gained increasing attention. Circular RNAs (circRNAs), which are a type of non-coding RNA without a 5' cap or 3' poly (A) tail, are abundantly found in the brain and might respond to and regulate synaptic function. Also, circRNAs have various functions, such as microRNA sponge, regulation of gene transcription and interaction with RNA binding protein. In addition, circRNAs are methylated by N 6-methyladenosine (m6A). In this review, we discuss the crucial roles of epigenetic modifications of circRNAs, such as m6A, in the genesis and development of neurons and in synaptic function and plasticity. Thus, this type of changes in circRNAs might be a therapeutic target in central nervous system (CNS) disorders and could aid the diagnosis and treatment of these disorders.

7.
Front Oncol ; 9: 500, 2019.
Article in English | MEDLINE | ID: mdl-31263676

ABSTRACT

Circular RNAs (circRNAs) were discovered in the 1970s, but they have drawn increasing attention in recent years. Currently, we know that circRNAs are not "wrongly spliced" during transcription but play important roles in the initiation and development of various diseases, including cancers. Recently, a growing number of studies have suggested that cancer stem cells (CSCs) may contribute to the origination and maintenance of cancers. This review briefly introduces the major functions of circRNAs, including interacting with other noncoding RNAs, competing with pre-mRNA splicing, binding with proteins to form a scaffold, promoting protein nuclear translocation and even translating proteins in a cap-independent manner. Furthermore, we describe the regulatory mechanism of circRNAs in CSC phenotypes and discuss the potential clinical applications of circRNAs in CSC-targeted therapy, including functioning as new biomarkers, acting as vaccines and breaking the therapeutic resistance of CSCs. Finally, we discuss the major limitations and challenges in the field, which will be beneficial for the future clinical use of circRNAs.

8.
Mol Cancer ; 16(1): 94, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28535767

ABSTRACT

Circular RNAs, a novel class of endogenous noncoding RNAs, are characterized by their covalently closed loop structures without a 5' cap or a 3' Poly A tail. Although the mechanisms of circular RNAs' generation and function are not fully clear, recent research has shown that circular RNAs may function as potential molecular markers for disease diagnosis and treatment and play an important role in the initiation and progression of human diseases, especially in tumours. This review summarizes some information about categories, biogenesis, functions at the molecular level, properties of circular RNAs and the possibility of circular RNAs as biomarkers in cancers.


Subject(s)
Biomarkers, Tumor , Neoplasms/genetics , RNA, Neoplasm , RNA/genetics , Animals , Eukaryotic Cells/metabolism , Humans , MicroRNAs/genetics , Neoplasms/diagnosis , Neoplasms/metabolism , RNA/metabolism , RNA Stability , RNA, Circular , RNA, Messenger/genetics , RNA, Untranslated/genetics , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...