Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2309706, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602437

ABSTRACT

Palladium-catalyzed Suzuki-Miyaura (SM) coupling is a valuable method for forming C─C bonds, including those between aryl moieties. However, achieving atroposelective synthesis of axially chiral styrenes via SM coupling remains challenging. In this study, a palladium-catalyzed atroposelective Suzuki-Miyaura coupling between gem-diborylalkenes and aryl halides is presented. Using the monophosphine ligand Me-BI-DIME (L2), a range of axially chiral tetra-substituted acyclic styrenes with high yields and excellent enantioselectivities are successfully synthesized. Control experiments reveal that the gem-diboryl group significantly influences the product enantioselectivities and the coupling prefers to occur at sites with lower steric hindrance. Additionally, the alkenyl boronate group in the products proves versatile, allowing for various transformations while maintaining high optical purities.

2.
Nat Commun ; 14(1): 2359, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095132

ABSTRACT

Synthetic sRNAs allow knockdown of target genes at translational level, but have been restricted to a limited number of bacteria. Here, we report the development of a broad-host-range synthetic sRNA (BHR-sRNA) platform employing the RoxS scaffold and the Hfq chaperone from Bacillus subtilis. BHR-sRNA is tested in 16 bacterial species including commensal, probiotic, pathogenic, and industrial bacteria, with >50% of target gene knockdown achieved in 12 bacterial species. For medical applications, virulence factors in Staphylococcus epidermidis and Klebsiella pneumoniae are knocked down to mitigate their virulence-associated phenotypes. For metabolic engineering applications, high performance Corynebacterium glutamicum strains capable of producing valerolactam (bulk chemical) and methyl anthranilate (fine chemical) are developed by combinatorial knockdown of target genes. A genome-scale sRNA library covering 2959 C. glutamicum genes is constructed for high-throughput colorimetric screening of indigoidine (natural colorant) overproducers. The BHR-sRNA platform will expedite engineering of diverse bacteria of both industrial and medical interest.


Subject(s)
RNA, Bacterial , RNA, Small Untranslated , RNA, Bacterial/genetics , Gene Knockdown Techniques , RNA, Small Untranslated/genetics , Bacteria/genetics , Metabolic Engineering , Gene Expression Regulation, Bacterial
4.
J Agric Food Chem ; 68(25): 6884-6891, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32458684

ABSTRACT

Pathway optimization plays an important role in fine-tuning metabolic pathways. In most conditions, more than three genes are involved in the biosynthesis pathway of a specific target product. To improve the titer of products, rational regulation of a group of genes by a series of promoters with different strengths is essential. On the basis of a series of RNA-Seq data, a set of 66 native promoters was chosen to fine-tune gene expression in Saccharomyces cerevisiae. Promoter strength was characterized by measuring the fluorescence strength of the enhanced green fluorescent protein through fluorescence-activated cell sorting. The expressions of PTDH1, PPGK1, PINO1, PSED1, and PCCW12 were stronger than that of PTDH3, whereas those of another 15 promoters were stronger than that of PTEF1. Then, 30 promoters were chosen to optimize the biosynthesis pathway of (2S)-naringenin from p-coumaric acid. With a high-throughput screening method, the highest titer of (2S)-naringenin in a 5 L bioreactor reached 1.21 g/L from p-coumaric acid, which is the highest titer according to the currently available reports.


Subject(s)
Coumaric Acids/metabolism , Flavanones/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Gene Library , Metabolic Engineering , Promoter Regions, Genetic , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...