Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38257696

ABSTRACT

Power transformers play a critical role in power systems, and the early detection of their faults and defects, accounting for over 30%, can be achieved through abnormal sound analysis. Sound source localization based on microphone arrays has proven effective in focusing on the troubleshooting scope, preventing potential severe hazards caused by delays in fault removal, and significantly reducing operational and maintenance difficulties and costs. However, existing microphone array-based sound source localization algorithms face challenges in maintaining both accuracy and simplicity and especially suffer from a sharp decrease in performance when dealing with multiple sound sources. This paper presents a multi-sound source localization algorithm for transformer faults based on polyphase filters, integrating the sum-difference monopulse angle measurement technique into the microphone array. Firstly, the signals received from the transformers are divided into multiple subbands using polyphase filters, allowing for multi-source separation and reducing the sampling rate of each subband. Next, the time-domain signals in subbands subject to noise suppression are processed into sum and difference beams. The resulting beam outputs are transformed into frequency-domain signals using the Fast Fourier Transform (FFT), effectively enhancing the signal-to-noise ratio (SNR) for separate sound sources. Finally, each subband undergoes sum-difference monopulse angle measurement in the frequency domain to achieve the high-precision localization of specific faults. The proposed algorithm has been demonstrated to be effective in achieving higher localization accuracy and reducing computational complexity in the presence of actual amplitude-phase errors in microphone arrays. These advantages can facilitate its practical applications. By enabling early targeting of fault sources when abnormalities occur, this algorithm provides valuable assistance to operation and maintenance personnel, thereby enhancing the maintenance efficiency of transformers.

2.
Poult Sci ; 100(2): 1059-1067, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33518064

ABSTRACT

Salmonella enterica serovar Gallinarum biovars Pullorum (S. Pullorum) is an infectious bacterial pathogen in the poultry industry that causes systemic pullorum disease. This disease causes great losses in terms of the clinical production and quality of chicken products in breeding farms. However, an acknowledged usable rapid detection method for its specific identification has not been reported, and it is generally difficult to distinguish from fowl typhoid caused by Salmonella enterica serovar Gallinarum biovars Gallinarum. The development of a specific and rapid detection method for this pathogen is therefore needed. In the present study, we targeted the single-nucleotide mutation position 237 of the S. Pullorum rfbS gene to develop an enzyme-activated blocked probe for its clinical rapid detection. The method displayed robust specificity and reproducibility, and it achieved minimal detection limits of 21 copies/µL of copy number and 4.53 pg/µL of genomic DNA. Compared with traditional identification and PCR methods, this method performed better for the detection of 100 clinical actual samples and without false negative results. The entire process can be accomplished in a 1-step closed-tube operation, overcomes the difficulties currently associated with S. Pullorum detection, and provides a specific and rapid method with broad application potential for SNP detection.


Subject(s)
Chickens , Poultry Diseases/diagnosis , Salmonella Infections, Animal/diagnosis , Salmonella enterica/isolation & purification , Animals , Poultry Diseases/microbiology , Reproducibility of Results , Salmonella enterica/classification , Salmonella enterica/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...