Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3558, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670995

ABSTRACT

The E3 ligase-degron interaction determines the specificity of the ubiquitin‒proteasome system. We recently discovered that FEM1B, a substrate receptor of Cullin 2-RING ligase (CRL2), recognizes C-degrons containing a C-terminal proline. By solving several cryo-EM structures of CRL2FEM1B bound to different C-degrons, we elucidate the dimeric assembly of the complex. Furthermore, we reveal distinct dimerization states of unmodified and neddylated CRL2FEM1B to uncover the NEDD8-mediated activation mechanism of CRL2FEM1B. Our research also indicates that, FEM1B utilizes a bipartite mechanism to recognize both the C-terminal proline and an upstream aromatic residue within the substrate. These structural findings, complemented by in vitro ubiquitination and in vivo cell-based assays, demonstrate that CRL2FEM1B-mediated polyubiquitination and subsequent protein turnover depend on both FEM1B-degron interactions and the dimerization state of the E3 ligase complex. Overall, this study deepens our molecular understanding of how Cullin-RING E3 ligase substrate selection mediates protein turnover.


Subject(s)
Cryoelectron Microscopy , NEDD8 Protein , Receptors, Interleukin-17 , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/chemistry , NEDD8 Protein/metabolism , NEDD8 Protein/genetics , Proline/metabolism , Protein Multimerization , HEK293 Cells , Protein Binding , Substrate Specificity , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/chemistry , Models, Molecular , Cullin Proteins/metabolism , Cullin Proteins/chemistry , Cullin Proteins/genetics , Degrons
2.
Cell ; 186(26): 5812-5825.e21, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38056462

ABSTRACT

Acyl-coenzyme A (acyl-CoA) species are cofactors for numerous enzymes that acylate thousands of proteins. Here, we describe an enzyme that uses S-nitroso-CoA (SNO-CoA) as its cofactor to S-nitrosylate multiple proteins (SNO-CoA-assisted nitrosylase, SCAN). Separate domains in SCAN mediate SNO-CoA and substrate binding, allowing SCAN to selectively catalyze SNO transfer from SNO-CoA to SCAN to multiple protein targets, including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1). Insulin-stimulated S-nitrosylation of INSR/IRS1 by SCAN reduces insulin signaling physiologically, whereas increased SCAN activity in obesity causes INSR/IRS1 hypernitrosylation and insulin resistance. SCAN-deficient mice are thus protected from diabetes. In human skeletal muscle and adipose tissue, SCAN expression increases with body mass index and correlates with INSR S-nitrosylation. S-nitrosylation by SCAN/SNO-CoA thus defines a new enzyme class, a unique mode of receptor tyrosine kinase regulation, and a revised paradigm for NO function in physiology and disease.


Subject(s)
Insulin , Oxidoreductases Acting on CH-CH Group Donors , Signal Transduction , Animals , Humans , Mice , Acyl Coenzyme A/metabolism , Adipose Tissue/metabolism , Insulin Resistance , Nitric Oxide/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism
3.
J Med Chem ; 66(8): 5657-5668, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37027003

ABSTRACT

Acute kidney injury (AKI) is associated with high morbidity and mortality, and no drugs are available clinically. Metabolic reprogramming resulting from the deletion of S-nitroso-coenzyme A reductase 2 (SCoR2; AKR1A1) protects mice against AKI, identifying SCoR2 as a potential drug target. Of the few known inhibitors of SCoR2, none are selective versus the related oxidoreductase AKR1B1, limiting therapeutic utility. To identify SCoR2 (AKR1A1) inhibitors with selectivity versus AKR1B1, analogs of the nonselective (dual 1A1/1B1) inhibitor imirestat were designed, synthesized, and evaluated. Among 57 compounds, JSD26 has 10-fold selectivity for SCoR2 versus AKR1B1 and inhibits SCoR2 potently through an uncompetitive mechanism. When dosed orally to mice, JSD26 inhibited SNO-CoA metabolic activity in multiple organs. Notably, intraperitoneal injection of JSD26 in mice protected against AKI through S-nitrosylation of pyruvate kinase M2 (PKM2), whereas imirestat was not protective. Thus, selective inhibition of SCoR2 has therapeutic potential to treat acute kidney injury.


Subject(s)
Acute Kidney Injury , Oxidoreductases , Mice , Animals , Oxidoreductases/metabolism , Coenzyme A/metabolism , Kidney/metabolism
4.
Cell Rep ; 41(4): 111538, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36288700

ABSTRACT

Accumulating evidence suggests that protein S-nitrosylation is enzymatically regulated and that specificity in S-nitrosylation derives from dedicated S-nitrosylases and denitrosylases that conjugate and remove S-nitrosothiols, respectively. Here, we report that mice deficient in the protein denitrosylase SCoR2 (S-nitroso-Coenzyme A Reductase 2; AKR1A1) exhibit marked reductions in serum cholesterol due to reduced secretion of the cholesterol-regulating protein PCSK9. SCoR2 associates with endoplasmic reticulum (ER) secretory machinery to control an S-nitrosylation cascade involving ER cargo-selection proteins SAR1 and SURF4, which moonlight as S-nitrosylases. SAR1 acts as a SURF4 nitrosylase and SURF4 as a PCSK9 nitrosylase to inhibit PCSK9 secretion, while SCoR2 counteracts nitrosylase activity by promoting PCSK9 denitrosylation. Inhibition of PCSK9 by an NO-based drug requires nitrosylase activity, and small-molecule inhibition of SCoR2 phenocopies the PCSK9-mediated reductions in cholesterol observed in SCoR2-deficient mice. Our results reveal enzymatic machinery controlling cholesterol levels through S-nitrosylation and suggest a distinct treatment paradigm for cardiovascular disease.


Subject(s)
Proprotein Convertase 9 , S-Nitrosothiols , Mice , Animals , Proteins/metabolism , Oxidoreductases/metabolism , S-Nitrosothiols/metabolism , Homeostasis , Nitric Oxide/metabolism , Membrane Proteins
5.
Nat Rev Endocrinol ; 18(2): 111-128, 2022 02.
Article in English | MEDLINE | ID: mdl-34789923

ABSTRACT

Insulin, which is released by pancreatic islet ß-cells in response to elevated levels of glucose in the blood, is a critical regulator of metabolism. Insulin triggers the uptake of glucose and fatty acids into the liver, adipose tissue and muscle, and promotes the storage of these nutrients in the form of glycogen and lipids. Dysregulation of insulin synthesis, secretion, transport, degradation or signal transduction all cause failure to take up and store nutrients, resulting in type 1 diabetes mellitus, type 2 diabetes mellitus and metabolic dysfunction. In this Review, we make the case that insulin signalling is intimately coupled to protein S-nitrosylation, in which nitric oxide groups are conjugated to cysteine thiols to form S-nitrosothiols, within effectors of insulin action. We discuss the role of S-nitrosylation in the life cycle of insulin, from its synthesis and secretion in pancreatic ß-cells, to its signalling and degradation in target tissues. Finally, we consider how aberrant S-nitrosylation contributes to metabolic diseases, including the roles of human genetic mutations and cellular events that alter S-nitrosylation of insulin-regulating proteins. Given the growing influence of S-nitrosylation in cellular metabolism, the field of metabolic signalling could benefit from renewed focus on S-nitrosylation in type 2 diabetes mellitus and insulin-related disorders.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Insulin-Secreting Cells , Diabetes Mellitus, Type 2/metabolism , Humans , Insulin/metabolism , Insulin Resistance/physiology , Insulin-Secreting Cells/metabolism , Nitric Oxide , Sulfhydryl Compounds
6.
Biochem Biophys Res Commun ; 589: 159-164, 2022 01 22.
Article in English | MEDLINE | ID: mdl-34922197

ABSTRACT

RNA modifications play important roles in mediating the biological functions of RNAs. 3-methylcytidine (m3C), albeit less abundant, is found to exist extensively in tRNAs, rRNAs and mRNAs. Human METTL6 is a m3C methyltransferase for tRNAs, including tRNASER(UGA). We solved the structure of human METTL6 in the presence of S-adenosyl-L-methionine and found by enzyme assay that recombinant human METTL6 is active towards tRNASER(UGA). Structural analysis indicated the detailed interactions between S-adenosyl-L-methionine and METTL6, and suggested potential tRNA binding region on the surface of METTL6. The structural research, complemented by biochemistry enzyme assay, will definitely shed light on the design of potent inhibitors for METTL6 in near future.


Subject(s)
Cytidine/analogs & derivatives , Methyltransferases/chemistry , Methyltransferases/metabolism , RNA/metabolism , Amino Acid Sequence , Cytidine/metabolism , Humans , Kinetics , Methylation , Structure-Activity Relationship
7.
J Biol Chem ; 294(48): 18285-18293, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31649033

ABSTRACT

Oxidative modification of Cys residues by NO results in S-nitrosylation, a ubiquitous post-translational modification and a primary mediator of redox-based cellular signaling. Steady-state levels of S-nitrosylated proteins are largely determined by denitrosylase enzymes that couple NAD(P)H oxidation with reduction of S-nitrosothiols, including protein and low-molecular-weight (LMW) S-nitrosothiols (S-nitroso-GSH (GSNO) and S-nitroso-CoA (SNO-CoA)). SNO-CoA reductases require NADPH, whereas enzymatic reduction of GSNO can involve either NADH or NADPH. Notably, GSNO reductase (GSNOR, Adh5) accounts for most NADH-dependent GSNOR activity, whereas NADPH-dependent GSNOR activity is largely unaccounted for (CBR1 mediates a minor portion). Here, we de novo purified NADPH-coupled GSNOR activity from mammalian tissues and identified aldo-keto reductase family 1 member A1 (AKR1A1), the archetypal mammalian SNO-CoA reductase, as a primary mediator of NADPH-coupled GSNOR activity in these tissues. Kinetic analyses suggested an AKR1A1 substrate preference of SNO-CoA > GSNO. AKR1A1 deletion from murine tissues dramatically lowered NADPH-dependent GSNOR activity. Conversely, GSNOR-deficient mice had increased AKR1A1 activity, revealing potential cross-talk among GSNO-dependent denitrosylases. Molecular modeling and mutagenesis of AKR1A1 identified Arg-312 as a key residue mediating the specific interaction with GSNO; in contrast, substitution of the SNO-CoA-binding residue Lys-127 minimally affected the GSNO-reducing activity of AKR1A1. Together, these findings indicate that AKR1A1 is a multi-LMW-SNO reductase that can distinguish between and metabolize the two major LMW-SNO signaling molecules GSNO and SNO-CoA, allowing for wide-ranging control of protein S-nitrosylation under both physiological and pathological conditions.


Subject(s)
Aldehyde Oxidoreductases/metabolism , Aldehyde Reductase/metabolism , NADP/metabolism , Nitric Oxide/metabolism , Aldehyde Oxidoreductases/genetics , Aldehyde Reductase/genetics , Animals , Coenzyme A/metabolism , Humans , Kinetics , Mammals , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction , S-Nitrosothiols/metabolism , Signal Transduction
8.
Int J Mol Sci ; 20(15)2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31349543

ABSTRACT

2,4-dinitrotoluene (2,4-DNT) is a common environmental pollutant, and was classified as a group 2B human carcinogenic compound by the International Agency for Research on Cancer. This study determined the toxic effects of 2,4-DNT exposure on zebrafish at the embryo-larvae stage, in terms of organ morphogenesis and the expression pattern of selected target genes related to lipid metabolism and oxygen transportation. The results showed that the 120-h post-fertilization LC50 of 2,4-DNT was 9.59 mg/L with a 95% confidence interval of 8.89-10.44 mg/L. The larvae treated with 2,4-DNT showed toxic symptoms including smaller body, less skin pigment production, yolk malabsorption, and disordered liver development. Further studies on the expression of genes related to lipid transport and metabolism, and respiration indicated that they were significantly affected by 2,4-DNT. It is concluded that 2,4-DNT exposure perturbed liver development and yolk absorption in early-life zebrafish, and disturbed the lipid metabolism /oxygen transport gene expression.


Subject(s)
Dinitrobenzenes/pharmacology , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Embryonic Development/drug effects , Gene Expression Regulation, Developmental/drug effects , Lipid Metabolism/drug effects , Animals , Biological Transport , Dinitrobenzenes/toxicity , Environmental Pollutants/pharmacology , Environmental Pollutants/toxicity , Larva , Lipolysis , Liver/drug effects , Liver/embryology , Liver/metabolism , Organogenesis/drug effects , Oxygen/metabolism , Zebrafish
9.
Nature ; 570(7759): E23, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31089212

ABSTRACT

Change history: In Fig. 1j of this Letter, one data point was inadvertently omitted from the graph for the acute kidney injury (AKI), double knockout (-/-), S-nitrosothiol (SNO) condition at a nitrosylation level of 25.9 pmol mg-1 and the statistical significance given of P = 0.0221 was determined by Fisher's test instead of P = 0.0032 determined by Tukey's test (with normalization for test-day instrument baseline). Figure 1 and its Source Data have been corrected online.

10.
Nature ; 565(7737): 96-100, 2019 01.
Article in English | MEDLINE | ID: mdl-30487609

ABSTRACT

Endothelial nitric oxide synthase (eNOS) is protective against kidney injury, but the molecular mechanisms of this protection are poorly understood1,2. Nitric oxide-based cellular signalling is generally mediated by protein S-nitrosylation, the oxidative modification of Cys residues to form S-nitrosothiols (SNOs). S-nitrosylation regulates proteins in all functional classes, and is controlled by enzymatic machinery that includes S-nitrosylases and denitrosylases, which add and remove SNO from proteins, respectively3,4. In Saccharomyces cerevisiae, the classic metabolic intermediate co-enzyme A (CoA) serves as an endogenous source of SNOs through its conjugation with nitric oxide to form S-nitroso-CoA (SNO-CoA), and S-nitrosylation of proteins by SNO-CoA is governed by its cognate denitrosylase, SNO-CoA reductase (SCoR)5. Mammals possess a functional homologue of yeast SCoR, an aldo-keto reductase family member (AKR1A1)5 with an unknown physiological role. Here we report that the SNO-CoA-AKR1A1 system is highly expressed in renal proximal tubules, where it transduces the activity of eNOS in reprogramming intermediary metabolism, thereby protecting kidneys against acute kidney injury. Specifically, deletion of Akr1a1 in mice to reduce SCoR activity increased protein S-nitrosylation, protected against acute kidney injury and improved survival, whereas this protection was lost when Enos (also known as Nos3) was also deleted. Metabolic profiling coupled with unbiased mass spectrometry-based SNO-protein identification revealed that protection by the SNO-CoA-SCoR system is mediated by inhibitory S-nitrosylation of pyruvate kinase M2 (PKM2) through a novel locus of regulation, thereby balancing fuel utilization (through glycolysis) with redox protection (through the pentose phosphate shunt). Targeted deletion of PKM2 from mouse proximal tubules recapitulated precisely the protective and mechanistic effects of S-nitrosylation in Akr1a1-/- mice, whereas Cys-mutant PKM2, which is refractory to S-nitrosylation, negated SNO-CoA bioactivity. Our results identify a physiological function of the SNO-CoA-SCoR system in mammals, describe new regulation of renal metabolism and of PKM2 in differentiated tissues, and offer a novel perspective on kidney injury with therapeutic implications.


Subject(s)
Acute Kidney Injury/enzymology , Acute Kidney Injury/prevention & control , Coenzyme A/metabolism , Metabolic Engineering , Oxidoreductases/metabolism , Aldehyde Reductase/deficiency , Aldehyde Reductase/genetics , Aldehyde Reductase/metabolism , Animals , Cell Line , Female , Glycolysis , HEK293 Cells , Humans , Kidney Tubules, Proximal/enzymology , Male , Mice , Mutation , Nitric Oxide Synthase Type III/metabolism , Oxidation-Reduction , Pentose Phosphate Pathway , Protein Multimerization , Pyruvate Kinase/antagonists & inhibitors , Pyruvate Kinase/deficiency , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism
11.
J Biol Chem ; 294(5): 1568-1578, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30538128

ABSTRACT

Protein S-nitrosylation mediates a large part of nitric oxide's influence on cellular function by providing a fundamental mechanism to control protein function across different species and cell types. At steady state, cellular S-nitrosylation reflects dynamic equilibria between S-nitrosothiols (SNOs) in proteins and small molecules (low-molecular-weight SNOs) whose levels are regulated by dedicated S-nitrosylases and denitrosylases. S-Nitroso-CoA (SNO-CoA) and its cognate denitrosylases, SNO-CoA reductases (SCoRs), are newly identified determinants of protein S-nitrosylation in both yeast and mammals. Because SNO-CoA is a minority species among potentially thousands of cellular SNOs, SCoRs must preferentially recognize this SNO substrate. However, little is known about the molecular mechanism by which cellular SNOs are recognized by their cognate enzymes. Using mammalian cells, molecular modeling, substrate-capture assays, and mutagenic analyses, we identified a single conserved surface Lys (Lys-127) residue as well as active-site interactions of the SNO group that mediate recognition of SNO-CoA by SCoR. Comparing SCoRK127Aversus SCoRWT HEK293 cells, we identified a SNO-CoA-dependent nitrosoproteome, including numerous metabolic protein substrates. Finally, we discovered that the SNO-CoA/SCoR system has a role in mitochondrial metabolism. Collectively, our findings provide molecular insights into the basis of specificity in SNO-CoA-mediated metabolic signaling and suggest a role for SCoR-regulated S-nitrosylation in multiple metabolic processes.


Subject(s)
Nitric Oxide/metabolism , Oxidoreductases/metabolism , Protein Processing, Post-Translational , S-Nitrosothiols/metabolism , Animals , HEK293 Cells , Humans , Mice , Mice, Knockout , Models, Molecular , Oxidoreductases/chemistry , Proteolysis , Proteomics , Substrate Specificity
13.
Sci Rep ; 7(1): 16163, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170410

ABSTRACT

Nitric oxide (NO) produced by endothelial cells in response to cytokines displays anti-inflammatory activity by preventing the adherence, migration and activation of neutrophils. The molecular mechanism by which NO operates at the blood-endothelium interface to exert anti-inflammatory properties is largely unknown. Here we show that on endothelial surfaces, NO is associated with the sulfhydryl-rich protein tissue transglutaminase (TG2), thereby endowing the membrane surfaces with anti-inflammatory properties. We find that tumor necrosis factor-α-stimulated neutrophil adherence is opposed by TG2 molecules that are bound to the endothelial surface. Alkylation of cysteine residues in TG2 or inhibition of endothelial NO synthesis renders the surface-bound TG2 inactive, whereas specific, high affinity binding of S-nitrosylated TG2 (SNO-TG2) to endothelial surfaces restores the anti-inflammatory properties of the endothelium, and reconstitutes the activity of endothelial-derived NO. We also show that SNO-TG2 is present in healthy tissues and that it forms on the membranes of shear-activated endothelial cells. Thus, the anti-inflammatory mechanism that prevents neutrophils from adhering to endothelial cells is identified with TG2 S-nitrosylation at the endothelial cell-blood interface.


Subject(s)
GTP-Binding Proteins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Neutrophils/metabolism , Nitric Oxide/metabolism , Transglutaminases/metabolism , Cell Adhesion/physiology , Human Umbilical Vein Endothelial Cells/cytology , Humans , Neutrophils/cytology , Protein Glutamine gamma Glutamyltransferase 2
14.
Methods Mol Biol ; 1421: 69-78, 2016.
Article in English | MEDLINE | ID: mdl-26965258

ABSTRACT

Ribonucleoprotein (RNP) complexes play essential roles in gene expression. Their assembly and disassembly control the fate of mRNA molecules. Here, we describe a method that examines the remodeling and disassembly of RNPs. One unique aspect of this method is that the RNA-binding proteins (RBPs) of interest are produced in HeLa cells with or without the desired modification and the RNP is assembled in cellular extracts with synthetic RNA oligonucleotides. We use this method to investigate how ubiquitination of an RBP affects its ability to bind its RNA target.


Subject(s)
RNA-Binding Proteins/metabolism , RNA/metabolism , Ribonucleoproteins/metabolism , Cell Culture Techniques/methods , Gene Expression , HeLa Cells , Humans , RNA/genetics , RNA-Binding Proteins/genetics , Ribonucleoproteins/genetics , Transfection/methods , Ubiquitination
15.
Sci China Life Sci ; 57(4): 432-44, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24658850

ABSTRACT

Emerging studies support that RNA-binding proteins (RBPs) play critical roles in human biology and pathogenesis. RBPs are essential players in RNA processing and metabolism, including pre-mRNA splicing, polyadenylation, transport, surveillance, mRNA localization, mRNA stability control, translational control and editing of various types of RNAs. Aberrant expression of and mutations in RBP genes affect various steps of RNA processing, altering target gene function. RBPs have been associated with various diseases, including neurological diseases. Here, we mainly focus on selected RNA-binding proteins including Nova-1/Nova-2, HuR/HuB/HuC/HuD, TDP-43, Fus, Rbfox1/Rbfox2, QKI and FMRP, discussing their function and roles in human diseases.


Subject(s)
Gene Expression Regulation , Nervous System Diseases/physiopathology , RNA-Binding Proteins/physiology , Animals , Antigens, Neoplasm/metabolism , DNA-Binding Proteins/metabolism , ELAV Proteins/metabolism , Fragile X Mental Retardation Protein/metabolism , Gene Expression Profiling , Humans , Mice , Mutation , Nerve Tissue Proteins/metabolism , Nervous System , Nervous System Diseases/metabolism , Neuro-Oncological Ventral Antigen , RNA Processing, Post-Transcriptional , RNA Splicing Factors , RNA, Messenger/metabolism , RNA-Binding Protein FUS/metabolism , RNA-Binding Proteins/metabolism
16.
Nucleic Acids Res ; 42(2): 701-13, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24081581

ABSTRACT

The molecular mechanisms through which alternative splicing and histone modifications regulate gene expression are now understood in considerable detail. Here, we discuss recent studies that connect these two previously separate avenues of investigation, beginning with the unexpected discoveries that nucleosomes are preferentially positioned over exons and DNA methylation and certain histone modifications also show exonic enrichment. These findings have profound implications linking chromatin structure, histone modification and splicing regulation. Complementary single gene studies provided insight into the mechanisms through which DNA methylation and histones modifications modulate alternative splicing patterns. Here, we review an emerging theme resulting from these studies: RNA-guided mechanisms integrating chromatin modification and splicing. Several groundbreaking papers reported that small noncoding RNAs affect alternative exon usage by targeting histone methyltransferase complexes to form localized facultative heterochromatin. More recent studies provided evidence that pre-messenger RNA itself can serve as a guide to enable precise alternative splicing regulation via local recruitment of histone-modifying enzymes, and emerging evidence points to a similar role for long noncoding RNAs. An exciting challenge for the future is to understand the impact of local modulation of transcription elongation rates on the dynamic interplay between histone modifications, alternative splicing and other processes occurring on chromatin.


Subject(s)
Alternative Splicing , Histones/metabolism , RNA/metabolism , Chromatin/metabolism , Chromatin Assembly and Disassembly , DNA Methylation , Epigenesis, Genetic , Exons , RNA Precursors/metabolism , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , RNA, Small Untranslated/metabolism
17.
Genes Dev ; 27(9): 1046-58, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23618873

ABSTRACT

The assembly and disassembly of ribonucleoproteins (RNPs) are dynamic processes that control every step of RNA metabolism, including mRNA stability. However, our knowledge of how RNP remodeling is achieved is largely limited to RNA helicase functions. Here, we report a previously unknown mechanism that implicates the ATPase p97, a protein-remodeling machine, in the dynamic regulation of mRNP disassembly. We found that p97 and its cofactor, UBXD8, destabilize p21, MKP-1, and SIRT1, three established mRNA targets of the RNA-binding protein HuR, by promoting release of HuR from mRNA. Importantly, ubiquitination of HuR with a short K29 chain serves as the signal for release. When cells are subjected to stress conditions, the steady-state levels of HuR ubiquitination change, suggesting a new mechanism through which HuR mediates the stress response. Our studies reveal a new paradigm in RNA biology: nondegradative ubiquitin signaling-dependent disassembly of mRNP promoted by the p97-UBXD8 complex to control mRNA stability.


Subject(s)
Adenosine Triphosphatases/metabolism , Blood Proteins/metabolism , ELAV Proteins/metabolism , Membrane Proteins/metabolism , Nuclear Proteins/metabolism , RNA Stability , RNA, Messenger/metabolism , Ribonucleoproteins/metabolism , Animals , Cyclin-Dependent Kinase Inhibitor p21/metabolism , HeLa Cells , Humans , Mice , Protein Binding , RNA, Messenger/genetics , Stress, Physiological , Ubiquitin/metabolism , Ubiquitination
18.
Nucleic Acids Res ; 41(9): 5049-61, 2013 May.
Article in English | MEDLINE | ID: mdl-23525460

ABSTRACT

The four Hu [embryonic lethal abnormal vision-like (ELAVL)] protein family members regulate alternative splicing by binding to U-rich sequences surrounding target exons and affecting the interaction of the splicing machinery and/or local chromatin modifications. Each of the Hu proteins contains a divergent N-terminus, three highly conserved RNA recognition motifs (RRM1, RRM2 and RRM3) and a hinge region separating RRM2 and RRM3. The roles of each domain in splicing regulation are not well understood. Here, we investigate how HuC, a relatively poorly characterized family member, regulates three target pre-mRNAs: neurofibromatosis type I, Fas and HuD. We find that the HuC N-terminus is dispensable for splicing regulation, and the three RRMs are required for splicing regulation of each target, whereas the hinge region contributes to regulation of only some targets. Interestingly, the regions of the hinge and RRM3 required for regulating different targets only partially overlap, implying substrate-specific mechanisms of HuC-mediated splicing regulation. We show that RRM1 and RRM2 are required for binding to target pre-mRNAs, whereas the hinge and RRM3 are required for HuC-HuC self-interaction. Finally, we find that the portions of RRM3 required for HuC-HuC interaction overlap with those required for splicing regulation of all three targets, suggesting a role of HuC-HuC interaction in splicing regulation.


Subject(s)
Alternative Splicing , ELAV Proteins/chemistry , Amino Acid Motifs , ELAV Proteins/genetics , ELAV Proteins/metabolism , Exons , HeLa Cells , Humans , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , Protein Binding , Protein Structure, Tertiary , RNA Precursors/metabolism , RNA, Messenger/metabolism , Sequence Deletion
19.
Proc Natl Acad Sci U S A ; 108(36): E627-35, 2011 Sep 06.
Article in English | MEDLINE | ID: mdl-21808035

ABSTRACT

Recent studies have provided strong evidence for a regulatory link among chromatin structure, histone modification, and splicing regulation. However, it is largely unknown how local histone modification patterns surrounding alternative exons are connected to differential alternative splicing outcomes. Here we show that splicing regulator Hu proteins can induce local histone hyperacetylation by association with their target sequences on the pre-mRNA surrounding alternative exons of two different genes. In both primary and mouse embryonic stem cell-derived neurons, histone hyperacetylation leads to an increased local transcriptional elongation rate and decreased inclusion of these exons. Furthermore, we demonstrate that Hu proteins interact with histone deacetylase 2 and inhibit its deacetylation activity. We propose that splicing regulators may actively modulate chromatin structure when recruited to their target RNA sequences cotranscriptionally. This "reaching back" interaction with chromatin provides a means to ensure accurate and efficient regulation of alternative splicing.


Subject(s)
Alternative Splicing/physiology , Chromatin/metabolism , ELAV Proteins/metabolism , Histones/metabolism , Neurons/metabolism , RNA Precursors/metabolism , Acetylation , Animals , Cells, Cultured , Exons/physiology , Histone Deacetylase 2/metabolism , Mice , Neurons/cytology , Transcription, Genetic/physiology
20.
Mol Cell Biol ; 28(17): 5507-16, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18573872

ABSTRACT

Precise and robust regulation of alternative splicing provides cells with an essential means of gene expression control. However, the mechanisms that ensure the tight control of tissue-specific alternative splicing are not well understood. It has been demonstrated that robust regulation often results from the contributions of multiple factors to one particular splicing pathway. We report here a novel strategy used by a single splicing regulator that blocks the formation of two distinct prespliceosome complexes to achieve efficient regulation. Fox-1/Fox-2 proteins, potent regulators of alternative splicing in the heart, skeletal muscle, and brain, repress calcitonin-specific splicing of the calcitonin/CGRP pre-mRNA. Using biochemical analysis, we found that Fox-1/Fox-2 proteins block prespliceosome complex formation at two distinct steps through binding to two functionally important UGCAUG elements. First, Fox-1/Fox-2 proteins bind to the intronic site to inhibit SF1-dependent E' complex formation. Second, these proteins bind to the exonic site to block the transition of E' complex that escaped the control of the intronic site to E complex. These studies provide evidence for the first example of regulated E' complex formation. The two-step repression of presplicing complexes by a single regulator provides a powerful and accurate regulatory strategy.


Subject(s)
RNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , Spliceosomes/metabolism , Base Sequence , Calcitonin/genetics , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic/genetics , Exons/genetics , HeLa Cells , Humans , Membrane Cofactor Protein/metabolism , Models, Biological , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Protein Binding , RNA Splice Sites , RNA Splicing/genetics , RNA Splicing Factors , Ribonucleoproteins/metabolism , Serine-Arginine Splicing Factors , Silencer Elements, Transcriptional , Splicing Factor U2AF , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...