Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 980: 176871, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117263

ABSTRACT

Non-small cell lung cancer (NSCLC) poses a global health threat, and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) such as gefitinib, afatinib, and osimertinib have achieved significant success in clinical treatment. However, the emergence of resistance limits the long-term efficacy of these treatments, necessitating urgent exploration of novel EGFR-TKIs. This review provides an in-depth summary and exploration of the resistance mechanisms associated with EGFR-TKIs, with a specific focus on representative drugs like gefitinib, afatinib, and osimertinib. Additionally, the review introduces a therapeutic strategy involving the combination of Chinese herbal medicines (CHMs) and chemotherapy drugs, highlighting the potential role of CHMs in overcoming NSCLC resistance. Through systematic analysis, we elucidate the primary resistance mechanisms of EGFR-TKIs in NSCLC treatment, emphasizing CHMs as potential treatment medicines and providing a fresh perspective for the development of next-generation EGFR-TKIs. This comprehensive review aims to guide the application of CHMs in combination therapy for NSCLC management, fostering the development of more effective and comprehensive treatment modalities to ultimately enhance patient outcomes.

2.
J Ethnopharmacol ; 331: 118265, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38677579

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese Medicines (TCMs) have emerged as a promising complementary therapy in the management of prostate cancer (PCa), particularly in addressing resistance to Docetaxel (DTX) chemotherapy. AIM OF THE REVIEW: This review aims to elucidate the mechanisms underlying the development of resistance to DTX in PCa and explore the innovative approach of integrating TCMs in PCa treatment to overcome this resistance. Key areas of investigation include alterations in microtubule proteins, androgen receptor and androgen receptor splice variant 7, ERG rearrangement, drug efflux mechanisms, cancer stem cells, centrosome clustering, upregulation of the PI3K/AKT signaling pathway, enhanced DNA damage repair capability, and the involvement of neurotrophin receptor 1/protein kinase C. MATERIALS AND METHODS: With "Prostate cancer", "Docetaxel", "Docetaxel resistance", "Natural compounds", "Traditional Chinese medicine", "Traditional Chinese medicine compound", "Medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS: Our findings underscore the intricate interplay of molecular alterations that collectively contribute to the resistance of PCa cells to DTX. Moreover, we highlight the potential of TCMs as a promising complementary therapy, showcasing their ability to counteract DTX resistance and enhance therapeutic efficacy. CONCLUSION: The integration of TCMs in PCa treatment emerges as an innovative approach with significant potential to overcome DTX resistance. This review not only provides insights into the mechanisms of resistance but also presents new prospects for improving the clinical outcomes of patients with PCa undergoing DTX therapy. The comprehensive understanding of these mechanisms lays the foundation for future research and the development of more effective therapeutic interventions.


Subject(s)
Docetaxel , Drug Resistance, Neoplasm , Medicine, Chinese Traditional , Prostatic Neoplasms , Humans , Male , Drug Resistance, Neoplasm/drug effects , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Docetaxel/pharmacology , Docetaxel/therapeutic use , Medicine, Chinese Traditional/methods , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
3.
Anal Bioanal Chem ; 416(7): 1647-1655, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38305859

ABSTRACT

Target-based drug discovery technology based on cell membrane targets has gained significant traction and has been steadily advancing. However, current methods still face certain limitations that need to be addressed. One of the challenges is the laborious preparation process of screening materials, which can be time-consuming and resource-intensive. Additionally, there is a potential issue of non-specific adsorption caused by carrier materials, which can result in false-positive results and compromise the accuracy of the screening process. To address these challenges, this paper proposes a target-based cell membrane affinity ultrafiltration technology for active ingredient discovery in natural products. In this technique, the cell membranes of human lung adenocarcinoma epithelial cells (A549) with a high expression of epidermal growth factor receptor (EGFR) were incubated with candidate drugs and then transferred to an ultrafiltration tube. Through centrifugation, components that interacted with EGFR were retained in the ultrafiltration tube as "EGFR-ligand" complex, while the components that did not interact with EGFR were separated. After thorough washing and eluting, the components interacting with EGFR were dissociated and further identified using LC-MS, enabling the discovery of bioactive compounds. Moreover, the target-based cell membrane affinity ultrafiltration technology exhibited commendable binding capacity and selectivity. Ultimately, this technology successfully screened and identified two major components from the Curcumae Rhizoma-Sparganii Rhizoma (CS) herb pair extracts, which were further validated for their potential anti-tumor activity through pharmacological experiments. By eliminating the need for laborious preparation of screening materials and the potential non-specific adsorption caused by carriers, the development of target-based cell membrane affinity ultrafiltration technology provides a simplified approach and method for bioactive compounds discovery in natural sources.


Subject(s)
Biological Products , Ultrafiltration , Humans , Ultrafiltration/methods , Biological Products/pharmacology , Technology , ErbB Receptors , Cell Membrane
4.
Talanta ; 270: 125558, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38183713

ABSTRACT

Deep eutectic solvents (DES), regarded as promising green solvents, have gained attention due to their distinctive properties, particularly in analytical chemistry. While the use of DES in solvent extraction and separation has been extensively studied, its application in the synthesis of adsorbents has just begun. Phenolic resin, with its polyhydroxy structure and stable spherical morphology, could serve as an effective as adsorbents for enrichment of active ingredients in herbal medicine. Designing adsorbents with high selectivity and adsorption capacity presents a critical challenge in the enrichment of active ingredients in herbal medicine. In this study, alcohol-based DESs were employed as regulators of morphology and structure instead of organic solvents, facilitating the creation of polyhydroxy structure, adjustable pores and high specific surface areas. The resulting DES-regulated porous phenolic resin demonstrated enhanced extraction and separation capacity for active ingredients compared to conventional spherical phenolic resin owing to the alcohol-based DES offering more interaction modes with the analytes.


Subject(s)
Abietanes , Formaldehyde , Phenols , Polymers , Salvia miltiorrhiza , Solvents/chemistry , Salvia miltiorrhiza/chemistry , Deep Eutectic Solvents , Porosity , Plant Extracts/chemistry , Ethanol
5.
Phytomedicine ; 123: 155185, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38134863

ABSTRACT

BACKGROUND: Elemene, an active anticancer extract derived from Curcuma wenyujin, has well-documented anticarcinogenic properties. Nevertheless, the role of elemene in prostate cancer (PCa) and its underlying molecular mechanism remain elusive. PURPOSE: This study focuses on investigating the anti-PCa effects of elemene and its underlying mechanisms. METHODS: Cell-based assays, including CCK-8, scratch, colony formation, cell cycle, and apoptosis experiments, to comprehensively assess the impact of elemene on PCa cells (LNCaP and PC3) in vitro. Additionally, we used a xenograft model with PC3 cells in nude mice to evaluate elemene in vivo efficacy. Targeted metabolomics analysis via HILIC-MS/MS was performed to investigate elemene potential target pathways, validated through molecular biology experiments, including western blotting and gene manipulation studies. RESULTS: In this study, we discovered that elemene has remarkable anti-PCa activity in both in vitro and in vivo settings, comparable to clinical chemotherapeutic drugs but with fewer side effects. Using our established targeted metabolomics approach, we demonstrated that ß-elemene, elemene's primary component, effectively inhibits glycolysis in PCa cells by downregulating 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) expression. Furthermore, we found that ß-elemene accomplishes this downregulation by upregulating p53 and FZR1. Knockdown and overexpression experiments conclusively confirmed the pivotal role of PFKFB3 in mediating ß-elemene's anti-PCa activity. CONCLUSION: This finding presents compelling evidence that elemene exerts its anti-PCa effect by suppressing glycolysis through the downregulation of PFKFB3. This study not only improves our understanding of elemene in PCa treatment but also provides valuable insights for developing more effective and safer therapies for PCa.


Subject(s)
Prostatic Neoplasms , Sesquiterpenes , Tandem Mass Spectrometry , Male , Animals , Mice , Humans , Mice, Nude , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Glycolysis , Cell Proliferation , Phosphofructokinase-2/genetics , Phosphofructokinase-2/pharmacology
6.
Asian J Androl ; 26(2): 123-134, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38157428

ABSTRACT

Prostate cancer (PCa) is one of the most common malignancies in males worldwide, and its development and progression involve the regulation of multiple metabolic pathways. Alterations in lipid metabolism affect the proliferation and metastatic capabilities of PCa cells. Cancer cells increase lipid synthesis and regulate fatty acid oxidation to meet their growth and energy demands. Similarly, changes occur in amino acid metabolism in PCa. Cancer cells exhibit an increased demand for specific amino acids, and they regulate amino acid transport and metabolic pathways to fulfill their proliferation and survival requirements. These changes are closely associated with disease progression and treatment response in PCa cells. Therefore, a comprehensive investigation of the metabolic characteristics of PCa is expected to offer novel insights and approaches for the early diagnosis and treatment of this disease.


Subject(s)
Amino Acids , Lipid Metabolism , Prostatic Neoplasms , Humans , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Male , Amino Acids/metabolism , Lipid Metabolism/physiology , Fatty Acids/metabolism , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL