Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Plant Dis ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347735

ABSTRACT

In recent years, avocado branch blight has gradually become one of the major diseases causing mortality of avocado trees, which seriously affects the economic development of avocado planting regions. In order to investigate the cause of the disease, the pathogens were isolated from the inter-root of avocado trees with onset of the disease and identified as Lasiodiplodia theobromae. At the same time, three Bacillus velezensis strains, YK194, YK201, and YK268, with better antagonistic effect and high stability against L. theobromae, were isolated from the rhizospheric soil of healthy avocado plants. The results of branch experiments and field trials showed that the avocado leaves as well as branches treated with strains YK194, YK201, and YK268 did not develop disease, and the incidence of avocado trees was significantly reduced. In the branch experiments, the biological control effect of strains YK194, YK201 and YK268 reached 62.07%, 52.70% and 72.45%, respectively. In the field experiments, it reached 63.85%, 63.43% and 73.86%, respectively, which indicated that these three strains all possessed good biological control effects on avocado branch blight. Further investigation on the mechanism of action of antagonistic strains revealed that B. velezensis YK268 could produce lipopeptides: surfactin, fengycin and iturin, which could significantly inhibit the spore germination of L. theobromae. Consequently, these three isolates have potential as biocontrol agents against L. theobromae.

2.
Microb Biotechnol ; 16(11): 2145-2160, 2023 11.
Article in English | MEDLINE | ID: mdl-37815509

ABSTRACT

Virulence factor modulating (VFM) is a quorum sensing (QS) signal shared by and specific to Dickeya bacteria, regulating the production of plant cell wall degrading enzymes (PCWDEs) and virulence of Dickeya. High polarity and trace of VFM signal increase the difficulty of signal separation and structure identification, and thus limit the development of quorum quenching strategy to biocontrol bacterial soft rot diseases caused by Dickeya. In order to high-throughput screen VFM quenching bacteria, a vfmE-gfp biosensor VR2 (VFM Reporter) sensitive to VFM signal was first constructed. Subsequently, two bacterial strains with high quenching efficiency were screened out by fluorescence intensity measurement and identified as Pseudomonas chlororaphis L5 and Enterobacter asburiae L95 using multilocus sequence analysis (MLSA). L5 and L95 supernatants reduced the expression of vfm genes, and both strains also decreased the production of PCWDEs of D. zeae MS2 and significantly reduced the virulence of D. oryzae EC1 on rice seedlings, D. zeae MS2 on banana seedlings, D. dadantii 3937 on potato and D. fangzhongdai CL3 on taro. Findings in this study provide a method to high-throughput screen VFM quenching bacteria and characterize novel functions of P. chlororaphis and E. asburiae in biocontrolling plant diseases through quenching VFM QS signal.


Subject(s)
Pseudomonas chlororaphis , Virulence Factors , Virulence Factors/genetics , Dickeya/metabolism , Quorum Sensing , Pseudomonas chlororaphis/metabolism , Enterobacteriaceae , Plant Diseases/prevention & control , Plant Diseases/microbiology
3.
Mol Plant Pathol ; 24(12): 1480-1494, 2023 12.
Article in English | MEDLINE | ID: mdl-37740253

ABSTRACT

The zeamines produced by Dickeya oryzae are potent polyamine antibiotics and phytotoxins that are essential for bacterial virulence. We recently showed that the RND efflux pump DesABC in D. oryzae confers partial resistance to zeamines. To fully elucidate the bacterial self-protection mechanisms, in this study we used transposon mutagenesis to identify the genes encoding proteins involved in zeamine resistance in D. oryzae EC1. This led to the identification of a seven-gene operon, arnEC1 , that encodes enzyme homologues associated with lipopolysaccharide modification. Deletion of the arnEC1 genes in strain EC1 compromised its zeamine resistance 8- to 16-fold. Further deletion of the des gene in the arnEC1 mutant background reduced zeamine resistance to a level similar to that of the zeamine-sensitive Escherichia coli DH5α. Intriguingly, the arnEC1 mutants showed varied bacterial virulence on rice, potato, and Chinese cabbage. Further analyses demonstrated that ArnBCATEC1 are involved in maintenance of the bacterial nonmucoid morphotype by repressing the expression of capsular polysaccharide genes and that ArnBEC1 is a bacterial virulence determinant, influencing transcriptional expression of over 650 genes and playing a key role in modulating bacterial motility and virulence. Taken together, these findings decipher a novel zeamine resistance mechanism in D. oryzae and document new roles of the Arn enzymes in modulation of bacterial physiology and virulence.


Subject(s)
Dickeya , Oryza , Dickeya/metabolism , Virulence/genetics , Enterobacteriaceae/genetics , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Polyamines/metabolism , Escherichia coli/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Oryza/microbiology , Gene Expression Regulation, Bacterial
4.
Plant Dis ; 107(8): 2325-2334, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37596715

ABSTRACT

Banana (Musa spp.) is an important fruit and food crop worldwide. In recent years, banana sheath rot has become a major problem in banana cultivation, causing plant death and substantial economic losses. Nevertheless, the pathogen profile of this disease has not been fully characterized. Klebsiella variicola is a versatile bacterium capable of colonizing different hosts, such as plants, humans, insects, and animals, and is recognized as an emerging pathogen in various hosts. In this study, we obtained 12 bacterial isolates from 12 different banana samples showing banana sheath rot in Guangdong and Guangxi Provinces, China. Phylogenetic analysis based on 16S rRNA sequences confirmed that all 12 isolates were K. variicola strains. We sequenced the genomes of these strains, performed comparative genomic analysis with other sequenced K. variicola strains, and found a lack of consistency in accessory gene content among these K. variicola strains. However, prediction based on the pan-genome of K. variicola revealed 22 unique virulence factors carried by the 12 pathogenic K. variicola isolates. Microbiome and microbial interaction network analysis of endophytes between the healthy tissues of diseased plants and healthy plants of two cultivars showed that Methanobacterium negatively interacts with Klebsiella in banana plants and that Herbaspirillum might indirectly inhibit Methanobacterium to promote Klebsiella growth. These results suggest that banana sheath rot is caused by the imbalance of plant endophytes and opportunistic pathogenic bacteria, providing an important basis for research and control of this disease.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Musa , Animals , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , China , Klebsiella/genetics , Endophytes
5.
PNAS Nexus ; 2(8): pgad274, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37649583

ABSTRACT

Indole is an important signal employed by many bacteria to modulate intraspecies signaling and interspecies or interkingdom communication. Our recent study revealed that indole plays a key role in regulating the physiology and virulence of Acinetobacter baumannii. However, it is not clear how A. baumannii perceives and responds to the indole signal in modulating biological functions. Here, we report that indole controls the physiology and virulence of A. baumannii through a previously uncharacterized response regulator designated as AbiR (A1S_1394), which contains a cheY-homologous receiver (REC) domain and a helix-turn-helix (HTH) DNA-binding domain. AbiR controls the same biological functions as the indole signal, and indole-deficient mutant phenotypes were rescued by in trans expression of AbiR. Intriguingly, unlike other response regulators that commonly interact with signal ligands through the REC domain, AbiR binds to indole with a high affinity via an unusual binding region, which is located between its REC and HTH domains. This interaction substantially enhances the activity of AbiR in promoter binding and in modulation of target gene expression. Taken together, our results present a widely conserved regulator that controls bacterial physiology and virulence by sensing the indole signal in a unique mechanism.

6.
Annu Rev Microbiol ; 77: 561-581, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37406345

ABSTRACT

Bacteria are single-celled organisms that carry a comparatively small set of genetic information, typically consisting of a few thousand genes that can be selectively activated or repressed in an energy-efficient manner and transcribed to encode various biological functions in accordance with environmental changes. Research over the last few decades has uncovered various ingenious molecular mechanisms that allow bacterial pathogens to sense and respond to different environmental cues or signals to activate or suppress the expression of specific genes in order to suppress host defenses and establish infections. In the setting of infection, pathogenic bacteria have evolved various intelligent mechanisms to reprogram their virulence to adapt to environmental changes and maintain a dominant advantage over host and microbial competitors in new niches. This review summarizes the bacterial virulence programming mechanisms that enable pathogens to switch from acute to chronic infection, from local to systemic infection, and from infection to colonization. It also discusses the implications of these findings for the development of new strategies to combat bacterial infections.


Subject(s)
Bacteria , Virulence , Bacteria/genetics
7.
Front Plant Sci ; 14: 1193297, 2023.
Article in English | MEDLINE | ID: mdl-37457350

ABSTRACT

Bacterial wilt caused by Ralstonia solanacearum ranks the second top important bacterial plant disease worldwide. It is also the most important bacterial disease threatening the healthy development of Casuarina equisetifolia protection forest. 3-hydroxypalmitic acid methyl ester (3-OH PAME) functions as an important quorum sensing (QS) signal regulating the expression of virulence genes in R. solanacearum, and has been regarded as an ideal target for disease prevention and control. To screen native microorganisms capable of degrading 3-OH PAME, samples of C. equisetifolia branches and forest soil were collected and cultured in the medium containing 3-OH PAME as the sole carbon source. Bacteria with over 85% degradation rates of 3-OH PAME after 7-day incubation were further separated and purified. As a result, strain Q1-7 isolated from forest soil and strain Q4-3 isolated from C. equisetifolia branches were obtained and identified as Pseudomonas novel species Pseudomonas forestsoilum sp. nov. and P. tohonis, respectively, according to whole genome sequencing results. The degradation efficiencies of 3-OH PAME of strains Q1-7 and Q4-3 were 95.80% and 100.00% at 48 h, respectively. Both strains showed high esterase activities and inhibited R. solanacearum exopolysaccharide (EPS) and cellulase production. Application of strains Q1-7 and Q4-3 effectively protects C. equisetifolia, peanut and tomato plants from infection by R. solanacearum. Findings in this study provide potential resources for the prevention and control of bacterial wilt caused by R. solanacearum, as well as valuable materials for the identification of downstream quenching genes and the research and development of quenching enzymes for disease control.

8.
Front Microbiol ; 14: 1189476, 2023.
Article in English | MEDLINE | ID: mdl-37234539
9.
BMC Biol ; 21(1): 62, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36978084

ABSTRACT

BACKGROUND: Envelope stress responses (ESRs) are critical for adaptive resistance of Gram-negative bacteria to envelope-targeting antimicrobial agents. However, ESRs are poorly defined in a large number of well-known plant and human pathogens. Dickeya oryzae can withstand a high level of self-produced envelope-targeting antimicrobial agents zeamines through a zeamine-stimulated RND efflux pump DesABC. Here, we unraveled the mechanism of D. oryzae response to zeamines and determined the distribution and function of this novel ESR in a variety of important plant and human pathogens. RESULTS: In this study, we documented that a two-component system regulator DzrR of D. oryzae EC1 mediates ESR in the presence of envelope-targeting antimicrobial agents. DzrR was found modulating bacterial response and resistance to zeamines through inducing the expression of RND efflux pump DesABC, which is likely independent on DzrR phosphorylation. In addition, DzrR could also mediate bacterial responses to structurally divergent envelope-targeting antimicrobial agents, including chlorhexidine and chlorpromazine. Significantly, the DzrR-mediated response was independent on the five canonical ESRs. We further presented evidence that the DzrR-mediated response is conserved in the bacterial species of Dickeya, Ralstonia, and Burkholderia, showing that a distantly located DzrR homolog is the previously undetermined regulator of RND-8 efflux pump for chlorhexidine resistance in B. cenocepacia. CONCLUSIONS: Taken together, the findings from this study depict a new widely distributed Gram-negative ESR mechanism and present a valid target and useful clues to combat antimicrobial resistance.


Subject(s)
Anti-Infective Agents , Chlorhexidine , Humans , Gram-Negative Bacteria/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism
10.
Plant Dis ; 107(5): 1613-1616, 2023 May.
Article in English | MEDLINE | ID: mdl-36444142

ABSTRACT

Pantoea anthophila CL1 is a causal agent of soft rot disease in Clausena lansium (wampee) in China and has inhibitory activity against the bacterial wilt pathogen Ralstonia solanacearum. Here we report the genome sequencing and analysis of P. anthophila CL1, representing the first complete genome resource of the species. The CL1 genome consists of four circular replicons (one chromosome and three plasmids), with a total size of 4,594,065 bp, and contains 4,109 protein-coding genes and 106 RNA genes. Our bioinformatic analysis of CL1 predicted 228 virulence factors, two Type VI Secretion Systems, and six secondary metabolite biosynthesis gene clusters producing saccharides, siderophores, and terpene. The complete genome sequence of P. anthophila CL1 provides a solid foundation for further investigation of its pathogenesis and antimicrobial activity and also represents a valuable resource for the comparative genomics of Pantoea.


Subject(s)
Clausena , Pantoea , Pantoea/genetics , Clausena/genetics , Genomics , Genome, Bacterial/genetics
11.
Crit Rev Microbiol ; : 1-19, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36539391

ABSTRACT

The opportunistic human pathogen Pseudomonas aeruginosa can cause severe infections in immunocompromized people or cystic fibrosis (CF) patients. Because of its remarkable ability to invade the host and withstand the bacteriocidal effect of most conventional antibiotics, the infection caused by P. aeruginosa has become a major concern for human health. The switch from acute to chronic infection is governed by the second messenger bis-(3'-5')-cyclic dimeric guanosine mono-phosphate (c-di-GMP) in P. aeruginosa, and c-di-GMP is now recognized to regulate many important biological processes in pathogenesis. The c-di-GMP signalling mechanisms in P. aeruginosa have been studied extensively in the past decade, revealing complicated c-di-GMP metabolism and signalling network. In this review, the underlying mechanisms of this signalling network will be discussed, mainly focussing on how environmental cues regulate c-di-GMP signalling, protein-protein interaction mediated functional regulation, heterogeneity of c-di-GMP and cross talk between c-di-GMP signalling and other signalling systems. Understanding the molecular mechanism underlying the complex c-di-GMP signalling network would be beneficial for developing therapeutic approaches and antibacterial agents to combat the threat from P. aeruginosa.

12.
Front Plant Sci ; 13: 1033192, 2022.
Article in English | MEDLINE | ID: mdl-36340374

ABSTRACT

Phytopathogen Dickeya oryzae is a causal agent of rice foot rot disease and the pathogen has an array of virulence factors, such as phytotoxin zeamines, plant cell wall degrading enzymes, cell motility, and biofilms, collectively contributing to the bacterial pathogenesis. In this study, through deletion analysis of predicted regulatory genes in D. oryzae EC1, we identified a two-component system associated with the regulation of bacterial virulence. The two-component system contains a histidine kinase ArcB and a response regulator ArcA, and deletion of their coding genes resulted in changed phenotypes in cell motility, biofilm formation, and bacterial virulence. Electrophoretic mobility shift assay revealed that ArcA bound to the promoters of the bcs operon and bssS, which respectively encode enzymes for the synthesis of celluloses and a biofilm formation regulatory protein. ArcA could also bind to the promoters of three virulence associated transcriptional regulatory genes, i.e., fis, slyA and ohrR. Surprisingly, although these three regulators were shown to modulate the production of cell wall degrading enzymes and zeamines, deletion of arcB and arcA did not seem to affect these phenotypes. Taken together, the findings from this study unveiled a new two-component system associated with the bacterial pathogenesis, which contributes to the virulence of D. oryzae mainly through its action on bacterial motility and biofilm formation.

13.
Int J Mol Sci ; 23(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36361548

ABSTRACT

Dickeya is a major and typical member of soft rot Pectobacteriaceae (SRP) with a wide range of plant hosts worldwide. Previous studies have identified D. zeae as the causal agent of banana soft rot disease in China. In 2017, we obtained banana soft rot pathogen strain FZ06 from the Philippines. Genome sequencing and analysis indicated that FZ06 can be classified as D. dadantii and represents a novel subspecies of D. dadantii, which we propose to name as subsp. paradisiaca. Compared with Chinese banana soft rot pathogenic strain D. zeae MS2, strain FZ06 has a similar host range but different virulence; FZ06 is significantly less virulent to banana and potato but more virulent to Chinese cabbage and onion. Characterization of virulence factors revealed obviously less production of pectate lyases (Pels), polygalacturonases (Pehs), proteases (Prts), and extrapolysaccharides (EPSs), as well as lower swimming and swarming motility and biofilm formation in strain FZ06. Genomic comparison of the two strains revealed five extra gene clusters in FZ06, including one Stt-type T2SS, three T4SSs, and one T4P. Expression of cell wall degrading enzyme (CWDE)-encoding genes is significantly lower in FZ06 than in MS2.


Subject(s)
Gammaproteobacteria , Musa , Dickeya , Philippines , Virulence/genetics , Plant Diseases
14.
Proc Natl Acad Sci U S A ; 119(41): e2209838119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191190

ABSTRACT

Cyclic diguanosine monophosphate (c-di-GMP) is widely used by bacteria to control biological functions in response to diverse signals or cues. A previous study showed that potential c-di-GMP metabolic enzymes play a role in the regulation of biofilm formation and motility in Acinetobacter baumannii. However, it was unclear whether and how A. baumannii cells use c-di-GMP signaling to modulate biological functions. Here, we report that c-di-GMP is an important intracellular signal in the modulation of biofilm formation, motility, and virulence in A. baumannii. The intracellular level of c-di-GMP is principally controlled by the diguanylate cyclases (DGCs) A1S_1695, A1S_2506, and A1S_3296 and the phosphodiesterase (PDE) A1S_1254. Intriguingly, we revealed that A1S_2419 (an elongation factor P [EF-P]), is a novel c-di-GMP effector in A. baumannii. Response to a c-di-GMP signal boosted A1S_2419 activity to rescue ribosomes from stalling during synthesis of proteins containing consecutive prolines and thus regulate A. baumannii physiology and pathogenesis. Our study presents a unique and widely conserved effector that controls bacterial physiology and virulence by sensing the second messenger c-di-GMP.


Subject(s)
Acinetobacter baumannii , Escherichia coli Proteins , Acinetobacter baumannii/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Cyclic GMP/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Guanosine Monophosphate , Peptide Elongation Factors , Phosphoric Diester Hydrolases/metabolism , Phosphorus-Oxygen Lyases/genetics , Phosphorus-Oxygen Lyases/metabolism , Virulence
15.
Infect Immun ; 90(8): e0006122, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35913171

ABSTRACT

Pseudomonas aeruginosa is generally believed to establish biofilm-associated infections under the regulation of the secondary messenger c-di-GMP. To evaluate P. aeruginosa biofilm physiology during ocular infections, comparative transcriptomic analysis was performed on wild-type P. aeruginosa PAO1, a ΔwspF mutant strain (high c-di-GMP levels), and a plac-yhjH-containing strain (low c-di-GMP levels) from mouse corneal infection, as well as in vitro biofilm and planktonic cultures. The c-di-GMP content in P. aeruginosa during corneal infection was monitored using a fluorescent c-di-GMP reporter strain. Biofilm-related genes were induced in in vivo PAO1 compared to in vitro planktonic bacteria. Several diguanylate cyclases and phosphodiesterases were commonly regulated in in vivo PAO1 and in vitro biofilm compared to in vitro planktonic bacteria. Several exopolysaccharide genes and motility genes were induced and downregulated, respectively, in in vivo PAO1 and the in vivo ΔwspF mutant compared to the in vivo plac-yhjH-containing strain. Elevation of c-di-GMP levels in P. aeruginosa began as early as 2 h postinfection. The ΔwspF mutant was less susceptible to host clearance than the plac-yhjH-containing strain and could suppress host immune responses. The type III secretion system (T3SS) was induced in in vivo PAO1 compared to in vitro biofilm bacteria. A ΔwspF mutant with a defective T3SS was more susceptible to host clearance than a ΔwspF mutant with a functional T3SS. Our study suggests that elevated intracellular c-di-GMP levels and T3SS activity in P. aeruginosa are necessary for establishment of infection and modulation of host immune responses in mouse cornea.


Subject(s)
Pseudomonas aeruginosa , Type III Secretion Systems , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Gene Expression Regulation, Bacterial , Mice , Pseudomonas aeruginosa/genetics , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
16.
Mol Plant Pathol ; 23(10): 1487-1507, 2022 10.
Article in English | MEDLINE | ID: mdl-35819797

ABSTRACT

Dickeya zeae is an aggressive bacterial phytopathogen that infects a wide range of host plants. It has been reported that integration host factor (IHF), a nucleoid-associated protein consisting of IHFα and IHFß subunits, regulates gene expression by influencing nucleoid structure and DNA bending. To define the role of IHF in the pathogenesis of D. zeae MS2, we deleted either and both of the IHF subunit encoding genes ihfA and ihfB, which significantly reduced the production of cell wall-degrading enzymes (CWDEs), an unknown novel phytotoxin and the virulence factor-modulating (VFM) quorum-sensing (QS) signal, cell motility, biofilm formation, and thereafter the infection ability towards both potato slices and banana seedlings. To characterize the regulatory pathways of IHF protein associated with virulence, IHF binding sites (consensus sequence 5'-WATCAANNNNTTR-3') were predicted and 272 binding sites were found throughout the genome. The expression of 110 tested genes was affected by IHF. Electrophoretic mobility shift assay (EMSA) showed direct interaction of IhfA protein with the promoters of vfmE, speA, pipR, fis, slyA, prtD, hrpL, hecB, hcp, indA, hdaA, flhD, pilT, gcpJ, arcA, arcB, and lysR. This study clarified the contribution of IHF in the pathogenic process of D. zeae by controlling the production of VFM and putrescine QS signals, phytotoxin, and indigoidine, the luxR-solo system, Fis, SlyA, and FlhD transcriptional regulators, and secretion systems from type I to type VI. Characterization of the regulatory networks of IHF in D. zeae provides a target for prevention and control of plant soft rot disease.


Subject(s)
Dickeya , Enterobacteriaceae , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Dickeya/genetics , Gene Expression Regulation, Bacterial , Integration Host Factors/genetics , Integration Host Factors/metabolism , Virulence/genetics , Virulence Factors/genetics
17.
Front Plant Sci ; 13: 852750, 2022.
Article in English | MEDLINE | ID: mdl-35557713

ABSTRACT

Bacterial soft rot is one of the most destructive diseases of taro (Colocasia esculenta) worldwide. In recent years, frequent outbreaks of soft rot disease have seriously affected taro production and became a major constraint to the development of taro planting in China. However, little is known about the causal agents of this disease, and the only reported pathogens are two Dickeya species and P. carotovorum. In this study, we report taro soft rot caused by two novel Pectobacterium strains, LJ1 and LJ2, isolated from taro corms in Ruyuan County, Shaoguan City, Guangdong Province, China. We showed that LJ1 and LJ2 fulfill Koch's postulates for taro soft rot. The two pathogens can infect taro both individually and simultaneously, and neither synergistic nor antagonistic interaction was observed between the two pathogens. Genome sequencing of the two strains indicated that LJ1 represents a novel species of the genus Pectobacterium, for which the name "Pectobacterium colocasium sp. nov." is proposed, while LJ2 belongs to Pectobacterium aroidearum. Pan-genome analysis revealed multiple pathogenicity-related differences between LJ1, LJ2, and other Pectobacterium species, including unique virulence factors, variation in the copy number and organization of Type III, IV, and VI secretion systems, and differential production of plant cell wall degrading enzymes. This study identifies two new soft rot Pectobacteriaceae (SRP) pathogens causing taro soft rot in China, reports a new case of co-infection of plant pathogens, and provides valuable resources for further investigation of the pathogenic mechanisms of SRP.

18.
PLoS Pathog ; 18(5): e1010562, 2022 05.
Article in English | MEDLINE | ID: mdl-35617422

ABSTRACT

Quorum sensing (QS) is widely employed by bacterial cells to control gene expression in a cell density-dependent manner. A previous study revealed that anthranilic acid from Ralstonia solanacearum plays a vital role in regulating the physiology and pathogenicity of R. solanacearum. We reported here that anthranilic acid controls the important biological functions and virulence of R. solanacearum through the receptor protein RaaR, which contains helix-turn-helix (HTH) and LysR substrate binding (LysR_substrate) domains. RaaR regulates the same processes as anthranilic acid, and both are present in various bacterial species. In addition, anthranilic acid-deficient mutant phenotypes were rescued by in trans expression of RaaR. Intriguingly, we found that anthranilic acid binds to the LysR_substrate domain of RaaR with high affinity, induces allosteric conformational changes, and then enhances the binding of RaaR to the promoter DNA regions of target genes. These findings indicate that the components of the anthranilic acid signaling system are distinguished from those of the typical QS systems. Together, our work presents a unique and widely conserved signaling system that might be an important new type of cell-to-cell communication system in bacteria.


Subject(s)
Ralstonia solanacearum , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Ralstonia solanacearum/genetics , Virulence/genetics , ortho-Aminobenzoates
19.
Front Microbiol ; 13: 839025, 2022.
Article in English | MEDLINE | ID: mdl-35273588

ABSTRACT

Dickeya zeae, a plant soft-rot pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors, infecting a wide variety of monocotyledonous and dicotyledonous plants and causing serious losses to the production of economic crops. In order to alleviate the problem of pesticide resistance during bacterial disease treatment, compounds targeting at T3SS have been screened using a hrpA-gfp bioreporter. After screening by Multifunctional Microplate Reader and determining by flow cytometer, five compounds including salicylic acid (SA), p-hydroxybenzoic acid (PHBA), cinnamyl alcohol (CA), p-coumaric acid (PCA), and hydrocinnamic acid (HA) significantly inhibiting hrpA promoter activity without affecting bacterial growth have been screened out. All the five compounds reduced hypersensitive response (HR) on non-host tobacco leaves and downregulated the expression of T3SS, especially the master regulator encoding gene hrpL. Inhibition efficacy of the five compounds against soft rot were also evaluated and results confirmed that the above compounds significantly lessened the soft-rot symptoms caused by Dickeya dadantii 3937 on potato, Dickeya fangzhongdai CL3 on taro, Dickeya oryzae EC1 on rice, and D. zeae MS2 on banana seedlings. Findings in this study provide potential biocontrol agents for prevention of soft-rot disease caused by Dickeya spp.

20.
Mol Plant Pathol ; 23(6): 870-884, 2022 06.
Article in English | MEDLINE | ID: mdl-35254732

ABSTRACT

Dickeya oryzae is a bacterial pathogen causing the severe rice stem rot disease in China and other rice-growing countries. We showed recently that the universal bacterial second messenger c-di-GMP plays an important role in modulation of bacterial motility and pathogenicity, but the mechanism of regulation remains unknown. In this study, bioinformatics analysis of the D. oryzae EC1 genome led to the identification of two proteins, YcgR and BcsA, both of which contain a conserved c-di-GMP receptor domain, known as the PilZ-domain. By deleting all the genes encoding c-di-GMP-degrading enzymes in D. oryzae EC1, the resultant mutant 7ΔPDE with high c-di-GMP levels became nonmotile, formed hyperbiofilm, and lost the ability to colonize and invade rice seeds. These phenotypes were partially reversed by deletion of ycgR in the mutant 7ΔPDE, whereas deletion of bcsA only reversed the hyperbiofilm phenotype of mutant 7ΔPDE. Significantly, double deletion of ycgR and bcsA in mutant 7ΔPDE rescued its motility, biofilm formation, and virulence to levels of wild-type EC1. In vitro biochemical experiments and in vivo phenotypic assays further validated that YcgR and BcsA proteins are the receptors for c-di-GMP, which together play a critical role in regulating the c-di-GMP-associated functionality. The findings from this study fill a gap in our understanding of how c-di-GMP modulates bacterial motility and biofilm formation, and provide useful clues for further elucidation of sophisticated virulence regulatory mechanisms in this important plant pathogen.


Subject(s)
Dickeya , Oryza , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Gene Expression Regulation, Bacterial , Oryza/microbiology , Phenotype , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...