Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(30): 36036-36051, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37488665

ABSTRACT

Spodoptera frugiperda (S. frugiperda) is an invasive pest that threatens global crop production and food security and poses a serious threat to maize production worldwide. Metal-organic framework (MOF) nanocarriers have great potential for agricultural pest control applications. The present study successfully prepared the chemical cross-linking of iron-based metal-organic framework nanoparticles (MIL-101(Fe)-NH2 NPs) with sodium lignosulfonate (SL) as a pH/laccase double stimuli-responsive pesticide release system. The average particle size of the prepared chlorfenapyr (CF)-loaded nanoparticles (CF@MIL-101-SL NPs) was 161.54 nm, and the loading efficiency was 44.52%. Bioactivity assays showed that CF@MIL-101-SL NPs increased the toxicity of CF to S. frugiperda and caused the rupture of the peritrophic membrane and enlargement of the midgut. Data from 16S rRNA gene sequencing showed that CF@MIL-101-SL treatment reduced the resistance of S. frugiperda to pesticides and pathogens and affected nutrient and energy availability by remodeling the intestinal microbiota of S. frugiperda. The dysregulated microbial community interacted with the broken peritrophic membrane, which exacerbated damage to the host. Nontargeted metabolomic results showed that ABC transporters may be a potential mechanism for the enhanced toxicity of CF@MIL-101-SL to S. frugiperda. In summary, the present study provides effective strategies for toxicological studies of nanopesticides against insects.


Subject(s)
Insecticides , Metal-Organic Frameworks , Microbiota , Animals , Insecticides/pharmacology , Metal-Organic Frameworks/pharmacology , Spodoptera/genetics , Iron/pharmacology , RNA, Ribosomal, 16S , Larva , Zea mays/genetics
2.
Sci Total Environ ; 885: 163769, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37149190

ABSTRACT

O-Carboxymethyl chitosan nanoparticles (O-CMC-NPs), which are organic pesticide carriers, have excellent application potential. Exploring the effects of O-CMC-NPs on non-target organisms, such as Apis cerana cerana, is critical for their effective application; however, such studies are limited. This study investigated the stress response of A. cerana Fabricius after O-CMC-NPs ingestion. The administration of high O-CMC-NP concentrations enhanced the activities of antioxidant and detoxifying enzymes in A. cerana, with the activity of glutathione-S-transferase increasing by 54.43 %-64.33 % after one day. The transit of O-CMC-NPs into the A. cerana midgut resulted in their deposition and adherence to the intestinal wall, as they cluster and precipitate in acidic conditions. The population of Gillianella bacteria in the middle intestine was remarkably reduced after 6 d of administration of high O-CMC-NP concentrations. Contrastingly, the abundance of Bifidobacteria and Lactobacillus in the rectum significantly increased. These results indicate that the intake of high concentrations of O-CMC-NPs causes a stress response in A. cerana and affects the relative abundance of crucial intestinal flora, which may pose a potential risk to the colony. This implies that even nanomaterials with favorable biocompatibility should be applied reasonably within a specific range to avoid adverse effects on the environment and non-target organisms in the context of large-scale research and promotion of nanomaterials.


Subject(s)
Chitosan , Gastrointestinal Microbiome , Bees , Animals , Antioxidants
3.
Carbohydr Polym ; 302: 120373, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36604051

ABSTRACT

In this study, pH-responsive LC@O-CMCS/PU nanoparticles were prepared by encapsulating λ-cyhalothrin (LC) with O-carboxymethyl chitosan (O-CMCS) to form LC/O-CMCS and then covering it with polyurethane (PU). Characterization and performance test results demonstrate that LC@O-CMCS/PU had good alkaline release properties and pesticide loading performance. Compared to commercial formulations containing large amounts of emulsifiers (e.g., emulsifiable concentrate, EC), LC@O-CMCS/PU showed better leaf-surface adhesion. On the dried pesticide-applied surfaces, the acute contact toxicity of LC@O-CMCS/PU to Harmonia axyridis (H. axyridis) was nearly 20 times lower than that of LC EC. Due to the slow-releasing property of LC@O-CMCS/PU, only 16.38 % of LC was released at 48 h in dew and effectively reduced the toxicity of dew. On the pesticide-applied leaves with dew, exposure to the LC (EC) caused 86.66 % mortality of H. axyridis larvae significantly higher than the LC@O-CMCS/PU, which was only 16.66 % lethality. Additionally, quantitative analysis demonstrated 11.33 mg/kg of λ-cyhalothrin in the dew on LC@O-CMCS/PU lower than LC (EC) with 4.54 mg/kg. In summary, LC@O-CMCS/PU effectively improves the safety of λ-cyhalothrin to H. axyridis and has great potential to be used in pest control combining natural enemies and chemical pesticides.


Subject(s)
Coleoptera , Pesticides , Pyrethrins , Animals , Pyrethrins/toxicity , Pesticides/toxicity , Pest Control , Hydrogen-Ion Concentration
4.
Environ Sci Pollut Res Int ; 30(8): 21588-21597, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36272005

ABSTRACT

Bifenthrin is a pyrethroid pesticide widely used on kumquats, but the residues in the peel and pulp after bifenthrin application at different maturity stages of kumquats have not been evaluated. This study developed a simple and rapid high-performance liquid chromatography (HPLC) method for the quantitative analysis of bifenthrin residues in whole fruit, kumquat peel, kumquat pulp, and soil. The results showed that regardless of whether bifenthrin was applied one or three times during the near-mature period, the half-lives of the fruit peel and fruit pulp were longer than those in the immature period. Kumquat fruit residues decreased with time at both maturity levels. The residues of bifenthrin in near-mature fruit exceeded the MRL in Guangxi and Fujian 14 days after the three applications of bifenthrin, suggesting that this issue should be focused on in kumquat production and supervision. However, for bifenthrin application in either the near-mature or the immature fruit period, the calculated risks for chronic dietary intake of kumquat were well below 100%. The data demonstrate that the chronic dietary intake risk of bifenthrin through kumquat consumption is low and within acceptable limits. These results provide a reference and risk assessment data for the safe and rational use of bifenthrin insecticides.


Subject(s)
Citrus , Pesticide Residues , Pyrethrins , Rutaceae , Fruit/chemistry , Citrus/chemistry , China , Pyrethrins/analysis , Risk Assessment , Eating , Pesticide Residues/analysis
5.
Toxics ; 10(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36006113

ABSTRACT

BACKGROUND: As a systematic fungicide, prochloraz is often used to control banana freckle disease, and it is significant to assess the safety and risk of prochloraz. METHODS: The dissipation kinetics and distribution of prochloraz in bananas were measured by high-performance liquid chromatography (HPLC). RESULTS: The results showed that the fortified recoveries in bananas were 83.01-99.12%, and the relative standard deviations (RSDs) were 2.45-7.84%. The half-life of prochloraz in banana peel (3.93-5.60 d) was significantly lower than it was in whole banana (8.25-10.80 d) and banana pulp (10.35-12.84 d). The terminal residue of prochloraz in banana fruits was below the maximum residue level (MRL, China) at pre-harvest intervals (PHI) of 21 d. Moreover, the residue of prochloraz in banana peel was always 1.06-7.71 times greater than it was in banana pulp. The dietary risk assessment results indicated that the prochloraz residue in bananas at PHI of 21 d was safe for representative populations. (4) Conclusions: We found that a 26.7% prochloraz emulsion oil in water (EW) diluted 1000-fold and sprayed three times under field conditions was safe and reliable, providing a reference for the safe application of prochloraz in bananas.

SELECTION OF CITATIONS
SEARCH DETAIL