Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 40(42): 8160-8173, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32928888

ABSTRACT

The amyloid-ß (Aß) peptide, a key pathogenic factor in Alzheimer's disease, attenuates the increase in cerebral blood flow (CBF) evoked by neural activity (functional hyperemia), a vital homeostatic response in which NMDA receptors (NMDARs) play a role through nitric oxide, and the CBF increase produced by endothelial factors. Tissue plasminogen activator (tPA), which is reduced in Alzheimer's disease and in mouse models of Aß accumulation, is required for the full expression of the NMDAR-dependent component of functional hyperemia. Therefore, we investigated whether tPA is involved in the neurovascular dysfunction of Aß. tPA activity was reduced, and the tPA inhibitor plasminogen inhibitor-1 (PAI-1) was increased in male mice expressing the Swedish mutation of the amyloid precursor protein (tg2576). Counteracting the tPA reduction with exogenous tPA or with pharmacological inhibition or genetic deletion of PAI-1 completely reversed the attenuation of the CBF increase evoked by whisker stimulation but did not ameliorate the response to the endothelium-dependent vasodilator acetylcholine. The tPA deficit attenuated functional hyperemia by suppressing NMDAR-dependent nitric oxide production during neural activity. Pharmacological inhibition of PAI-1 increased tPA activity, prevented neurovascular uncoupling, and ameliorated cognition in 11- to 12-month-old tg2576 mice, effects associated with a reduction of cerebral amyloid angiopathy but not amyloid plaques. The data unveil a selective role of the tPA in the suppression of functional hyperemia induced by Aß and in the mechanisms of cerebral amyloid angiopathy, and support the possibility that modulation of the PAI-1-tPA pathway may be beneficial in diseases associated with amyloid accumulation.SIGNIFICANCE STATEMENT Amyloid-ß (Aß) peptides have profound neurovascular effects that may contribute to cognitive impairment in Alzheimer's disease. We found that Aß attenuates the increases in blood flow evoked by neural activation through a reduction in tissue plasminogen activator (tPA) caused by upregulation of its endogenous inhibitor plasminogen inhibitor-1 (PAI-1). tPA deficiency prevents NMDA receptors from triggering nitric oxide production, thereby attenuating the flow increase evoked by neural activity. PAI-1 inhibition restores tPA activity, rescues neurovascular coupling, reduces amyloid deposition around blood vessels, and improves cognition in a mouse model of Aß accumulation. The findings demonstrate a previously unappreciated role of tPA in Aß-related neurovascular dysfunction and in vascular amyloid deposition. Restoration of tPA activity could be of therapeutic value in diseases associated with amyloid accumulation.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Blood Vessels/drug effects , Blood Vessels/physiopathology , Cerebral Amyloid Angiopathy/physiopathology , Cerebrovascular Disorders/physiopathology , Neurons/drug effects , Tissue Plasminogen Activator/deficiency , Amyloid beta-Protein Precursor/metabolism , Animals , Cerebral Amyloid Angiopathy/genetics , Cerebrovascular Circulation , Cerebrovascular Disorders/genetics , Cerebrovascular Disorders/prevention & control , Cognition , Humans , Hyperemia/physiopathology , Male , Mice , Mice, Knockout , Mice, Transgenic , Nitric Oxide/biosynthesis , Physical Stimulation , Receptors, N-Methyl-D-Aspartate/metabolism , Serpin E2/genetics , Tissue Plasminogen Activator/genetics , Vibrissae/innervation
2.
Nat Neurosci ; 22(3): 413-420, 2019 03.
Article in English | MEDLINE | ID: mdl-30742116

ABSTRACT

Cerebral blood flow (CBF) reductions in Alzheimer's disease patients and related mouse models have been recognized for decades, but the underlying mechanisms and resulting consequences for Alzheimer's disease pathogenesis remain poorly understood. In APP/PS1 and 5xFAD mice we found that an increased number of cortical capillaries had stalled blood flow as compared to in wild-type animals, largely due to neutrophils that had adhered in capillary segments and blocked blood flow. Administration of antibodies against the neutrophil marker Ly6G reduced the number of stalled capillaries, leading to both an immediate increase in CBF and rapidly improved performance in spatial and working memory tasks. This study identified a previously uncharacterized cellular mechanism that explains the majority of the CBF reduction seen in two mouse models of Alzheimer's disease and demonstrated that improving CBF rapidly enhanced short-term memory function. Restoring cerebral perfusion by preventing neutrophil adhesion may provide a strategy for improving cognition in Alzheimer's disease patients.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Brain/blood supply , Brain/metabolism , Memory/physiology , Neutrophils/metabolism , Amyloid beta-Peptides/metabolism , Animals , Antibodies/administration & dosage , Antigens, Ly/administration & dosage , Antigens, Ly/immunology , Brain/physiopathology , Capillaries/physiopathology , Disease Models, Animal , Female , Male , Memory/drug effects , Mice, Inbred C57BL , Mice, Transgenic , Models, Neurological , Neutrophils/immunology , Peptide Fragments/metabolism
3.
Proc Natl Acad Sci U S A ; 110(8): 3089-94, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23382216

ABSTRACT

Deposition of amyloid-ß (Aß) in cerebral arteries, known as cerebral amyloid angiopathy (CAA), occurs both in the setting of Alzheimer's disease and independent of it, and can cause cerebrovascular insufficiency and cognitive deficits. The mechanisms leading to CAA have not been established, and no therapeutic targets have been identified. We investigated the role of CD36, an innate immunity receptor involved in Aß trafficking, in the neurovascular dysfunction, cognitive deficits, and amyloid accumulation that occurs in mice expressing the Swedish mutation of the amyloid precursor protein (Tg2576). We found that Tg2576 mice lacking CD36 have a selective reduction in Aß1-40 and CAA. This reduced vascular amyloid deposition was associated with preservation of the Aß vascular clearance receptor LRP-1, and protection from the deleterious effects of Aß on cerebral arterioles. These beneficial vascular effects were reflected by marked improvements in neurovascular regulation and cognitive performance. Our data suggest that CD36 promotes vascular amyloid deposition and the resulting cerebrovascular damage, leading to neurovascular dysfunction and cognitive deficits. These findings identify a previously unrecognized role of CD36 in the mechanisms of vascular amyloid deposition, and suggest that this scavenger receptor is a putative therapeutic target for CAA and related conditions.


Subject(s)
CD36 Antigens/immunology , Cerebral Amyloid Angiopathy/immunology , Immunity, Innate , Animals , Blood Vessels/metabolism , CD36 Antigens/genetics , Cerebrovascular Circulation , Fluorescent Antibody Technique , Maze Learning , Mice , Mice, Transgenic , Pericytes/immunology , Zonula Occludens-1 Protein/metabolism
4.
PLoS One ; 6(10): e26612, 2011.
Article in English | MEDLINE | ID: mdl-22028924

ABSTRACT

Microhemorrhages are common in the aging brain, and their incidence is correlated with increased risk of neurodegenerative disease. Past work has shown that occlusion of individual cortical microvessels as well as large-scale hemorrhages can lead to degeneration of neurons and increased inflammation. Using two-photon excited fluorescence microscopy in anesthetized mice, we characterized the acute and chronic dynamics of vessel bleeding, tissue compression, blood flow change, neural degeneration, and inflammation following a microhemorrhage caused by rupturing a single penetrating arteriole with tightly-focused femtosecond laser pulses. We quantified the extravasation of red blood cells (RBCs) and blood plasma into the brain and determined that the bleeding was limited by clotting. The vascular bleeding formed a RBC-filled core that compressed the surrounding parenchymal tissue, but this compression was not sufficient to crush nearby brain capillaries, although blood flow speeds in these vessels was reduced by 20%. Imaging of cortical dendrites revealed no degeneration of the large-scale structure of the dendritic arbor up to 14 days after the microhemorrhage. Dendrites close to the RBC core were displaced by extravasating RBCs but began to relax back one day after the lesion. Finally, we observed a rapid inflammatory response characterized by morphology changes in microglia/macrophages up to 200 µm from the microhemorrhage as well as extension of cellular processes into the RBC core. This inflammation persisted over seven days. Taken together, our data suggest that a cortical microhemorrhage does not directly cause significant neural pathology but does trigger a sustained, local inflammatory response.


Subject(s)
Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/physiopathology , Dendrites/pathology , Animals , Arterioles/metabolism , Astrocytes/metabolism , Blood Coagulation , Cell Count , Cerebral Cortex/blood supply , Cerebral Cortex/metabolism , Cerebral Hemorrhage/etiology , Cerebral Hemorrhage/metabolism , Cerebrovascular Circulation , Erythrocytes/metabolism , Female , Glial Fibrillary Acidic Protein , Hematoma/metabolism , Hematoma/pathology , Hematoma/physiopathology , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Inflammation/physiopathology , Laser Therapy/adverse effects , Macrophages/immunology , Male , Mice , Microglia/pathology , Nerve Tissue Proteins/metabolism , Plasma/metabolism , Time Factors , Up-Regulation
5.
Proc Natl Acad Sci U S A ; 108(12): 5063-8, 2011 Mar 22.
Article in English | MEDLINE | ID: mdl-21383152

ABSTRACT

Increasing evidence indicates that cerebrovascular dysfunction plays a pathogenic role in Alzheimer's dementia (AD). Amyloid-ß (Aß), a peptide central to the pathogenesis of AD, has profound vascular effects mediated, for the most part, by reactive oxygen species produced by the enzyme NADPH oxidase. The mechanisms linking Aß to NADPH oxidase-dependent vascular oxidative stress have not been identified, however. We report that the scavenger receptor CD36, a membrane glycoprotein that binds Aß, is essential for the vascular oxidative stress and neurovascular dysfunction induced by Aß1-40. Thus, topical application of Aß1-40 onto the somatosensory cortex attenuates the increase in cerebral blood flow elicited by neural activity or by endothelium-dependent vasodilators in WT mice but not in CD36-null mice (CD36(0/0)). The cerebrovascular effects of infusion of Aß1-40 into cerebral arteries are not observed in mice pretreated with CD36 blocking antibodies or in CD36(0/0) mice. Furthermore, CD36 deficiency prevents the neurovascular dysfunction observed in transgenic mice overexpressing the Swedish mutation of the amyloid precursor protein Tg2576 despite elevated levels of brain Aß1-40. CD36 is also required for the vascular oxidative stress induced by exogenous Aß1-40 or observed in Tg2576 mice. These observations establish CD36 as a key link between Aß1-40 and the NADPH oxidase-dependent vascular oxidative stress underlying the neurovascular dysfunction and suggest that CD36 is a potential therapeutical target to counteract the cerebrovascular dysfunction associated with Aß.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , CD36 Antigens/metabolism , Cerebrovascular Disorders/metabolism , Oxidative Stress , Peptide Fragments/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/genetics , Animals , Antibodies, Neutralizing/pharmacology , CD36 Antigens/genetics , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/genetics , Cerebrovascular Disorders/genetics , Cerebrovascular Disorders/physiopathology , Female , Humans , Male , Mice , Mice, Transgenic , Mutation , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Peptide Fragments/genetics , Protein Binding , Somatosensory Cortex/metabolism , Somatosensory Cortex/physiopathology
6.
J Neurosci ; 30(36): 12103-12, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20826673

ABSTRACT

Chronic intermittent hypoxia (CIH) is a concomitant of sleep apnea that produces a slowly developing chemosensory-dependent blood pressure elevation ascribed in part to NMDA receptor-dependent plasticity and reduced nitric oxide (NO) signaling in the carotid body. The hypothalamic paraventricular nucleus (PVN) is responsive to hypoxic stress and also contains neurons that express NMDA receptors and neuronal nitric oxide synthase (nNOS). We tested the hypothesis that extended (35 d) CIH results in a decrease in the surface/synaptic availability of the essential NMDA NR1 subunit in nNOS-containing neurons and NMDA-induced NO production in the PVN of mice. As compared with controls, the 35 d CIH-exposed mice showed a significant increase in blood pressure and an increased density of NR1 immunogold particles located in the cytoplasm of nNOS-containing dendrites. Neither of these between-group differences was seen after 14 d, even though there was already a reduction in the NR1 plasmalemmal density at this time point. Patch-clamp recording of PVN neurons in slices showed a significant reduction in NMDA currents after either 14 or 35 d exposure to CIH compared with sham controls. In contrast, NO production, as measured by the NO-sensitive fluorescent dye 4-amino-5-methylamino-2',7'-difluorofluorescein, was suppressed only in the 35 d CIH group. We conclude that CIH produces a reduction in the surface/synaptic targeting of NR1 in nNOS neurons and decreases NMDA receptor-mediated currents in the PVN before the emergence of hypertension, the development of which may be enabled by suppression of NO signaling in this brain region.


Subject(s)
Hypoxia/pathology , Neuronal Plasticity/physiology , Neurons/physiology , Nitric Oxide/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction/physiology , Analysis of Variance , Animals , Arginine/pharmacology , Blood Gas Analysis/methods , Blood Pressure/physiology , Cyclic N-Oxides/pharmacology , Dizocilpine Maleate/pharmacology , Dose-Response Relationship, Drug , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Free Radical Scavengers/pharmacology , Hydrogen-Ion Concentration/drug effects , Hypoxia/physiopathology , Imidazoles/pharmacology , In Vitro Techniques , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission/methods , N-Methylaspartate/pharmacology , Neuronal Plasticity/drug effects , Neurons/drug effects , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide Synthase Type I/ultrastructure , Paraventricular Hypothalamic Nucleus/pathology , Paraventricular Hypothalamic Nucleus/ultrastructure , Receptors, N-Methyl-D-Aspartate/ultrastructure , S-Nitroso-N-Acetylpenicillamine/pharmacology , Signal Transduction/drug effects , Time Factors , Vasopressins/metabolism
7.
Lung Cancer ; 38(2): 131-6, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12399123

ABSTRACT

The molecular mechanisms of oncogenesis in mesothelioma involve the loss of negative regulators of cell growth including p16(INK4a). Absence of expression of the p16(INK4a) gene product is exhibited in virtually all mesothelioma tumors and cell lines examined to date. Loss of p16(INK4a) expression has also been frequently observed in more common neoplasms such as lung cancer as well. In a wide variety of these malignancies, including lung cancer, p16(INK4a) expression is known to be inactivated by hypermethylation of the first exon. In a survey of ten mesothelioma cell lines, one cell line (NCI-H2596) was identified as possessing loss of p16(INK4a) gene product following gene methylation. This methylation in these mesothelioma cells could be reversed, resulting in re-expression of p16(INK4a) protein, following the treatment of the cells with cytidine analogs, which are known inhibitors of DNA methylation. In previous clinical trials in mesothelioma, the cytidine analog dihydro-5-azacytidine (DHAC) has been found to induce clinical responses in approximately 17% of patients with mesothelioma treated with this drug, including prolonged complete responses. In addition, we identified evidence for methylation of p16(INK4a) in three of 11 resected mesothelioma tumor samples. When both cell lines and tumors are combined, inactivation of p16(INK4a) gene product expression following DNA hypermethylation was found in four of 21 samples (19%). We are further exploring the clinical significance of inhibition of methylation in mesothelioma by cytidine analogs. This may provide a potential treatment target in some mesothelioma tumors by inhibition of methylation.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16/biosynthesis , DNA Methylation , Gene Expression Regulation, Neoplastic , Mesothelioma/genetics , Mesothelioma/physiopathology , Cell Cycle , Humans , Polymerase Chain Reaction , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...