Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
J Clin Hypertens (Greenwich) ; 26(5): 584-587, 2024 May.
Article in English | MEDLINE | ID: mdl-38605571

ABSTRACT

In patients with primary hyperaldosteronism (PA), adrenal vein sampling (AVS) can identify patients suitable for unilateral adrenalectomy. However, in AVS with an indeterminate aldosterone-to-cortisol lateralization (ACL) ratio of 3.0-4.0, clinical guidance is unclear. The authors screened all patients undergoing AVS at the Cleveland Clinic from October 2010 to January 2021 and identified 18 patients with indeterminate ACL results. Ten underwent adrenalectomy and eight continued medical management. The surgical group was younger (58.5 vs. 68 years, p = .17), and more likely to have a unilateral imaging adrenal abnormality (90% vs. 38%, p = .043) and a lower contralateral suppression index (0.63 vs. 1.1, p = .14). Post-treatment, the surgical group had a significant reduction in diastolic blood pressure (-5.5 mmHg, p = .043) and aldosterone (4.40 vs. 35.80 ng/mL, p = .035) and required fewer anti-hypertensive medications (2 vs. 3, p = .015). These findings may support the benefit of adrenalectomy in a select group of patients with indeterminate ACL.


Subject(s)
Adrenal Glands , Adrenalectomy , Aldosterone , Hydrocortisone , Hyperaldosteronism , Humans , Hyperaldosteronism/surgery , Hyperaldosteronism/blood , Hyperaldosteronism/diagnosis , Middle Aged , Female , Adrenalectomy/methods , Male , Adrenal Glands/blood supply , Adrenal Glands/surgery , Aldosterone/blood , Aged , Hydrocortisone/blood , Antihypertensive Agents/therapeutic use , Retrospective Studies , Veins/surgery , Blood Pressure/physiology , Hypertension/diagnosis , Hypertension/surgery , Ohio/epidemiology , Treatment Outcome
5.
Nat Commun ; 15(1): 2425, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499544

ABSTRACT

Up to 80% of the human genome produces "dark matter" RNAs, most of which are noncapped RNAs (napRNAs) that frequently act as noncoding RNAs (ncRNAs) to modulate gene expression. Here, by developing a method, NAP-seq, to globally profile the full-length sequences of napRNAs with various terminal modifications at single-nucleotide resolution, we reveal diverse classes of structured ncRNAs. We discover stably expressed linear intron RNAs (sliRNAs), a class of snoRNA-intron RNAs (snotrons), a class of RNAs embedded in miRNA spacers (misRNAs) and thousands of previously uncharacterized structured napRNAs in humans and mice. These napRNAs undergo dynamic changes in response to various stimuli and differentiation stages. Importantly, we show that a structured napRNA regulates myoblast differentiation and a napRNA DINAP interacts with dyskerin pseudouridine synthase 1 (DKC1) to promote cell proliferation by maintaining DKC1 protein stability. Our approach establishes a paradigm for discovering various classes of ncRNAs with regulatory functions.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Humans , Animals , Mice , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , MicroRNAs/genetics , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , Nuclear Proteins , Cell Cycle Proteins
6.
Genes Dis ; 11(1): 382-396, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37588203

ABSTRACT

As the most common internal modification of mRNA, N6-methyladenosine (m6A) and its regulators modulate gene expression and play critical roles in various biological and pathological processes including tumorigenesis. It was reported previously that m6A methyltransferase (writer), methyltransferase-like 3 (METTL3) adds m6A in primary microRNAs (pri-miRNAs) and facilitates its processing into precursor miRNAs (pre-miRNAs). However, it is unknown whether m6A modification also plays a role in the maturation process of pre-miRNAs and (if so) whether such a function contributes to tumorigenesis. Here, we found that YTHDF2 is aberrantly overexpressed in acute myeloid leukemia (AML) patients, especially in relapsed patients, and plays an oncogenic role in AML. Moreover, YTHDF2 promotes expression of miR-126-3p (also known as miR-126, as it is the main product of precursor miR-126 (pre-miR-126)), a miRNA that was reported as an oncomiRNA in AML, through facilitating the processing of pre-miR-126 into mature miR-126. Mechanistically, YTHDF2 recognizes m6A modification in pre-miR-126 and recruits AGO2, a regulator of pre-miRNA processing, to promote the maturation of pre-miR-126. YTHDF2 positively and negatively correlates with miR-126 and miR-126's downstream target genes, respectively, in AML patients, and forced expression of miR-126 could largely rescue YTHDF2/Ythdf2 depletion-mediated suppression on AML cell growth/proliferation and leukemogenesis, indicating that miR-126 is a functionally important target of YTHDF2 in AML. Overall, our studies not only reveal a previously unappreciated YTHDF2/miR-126 axis in AML and highlight the therapeutic potential of targeting this axis for AML treatment, but also suggest that m6A plays a role in pre-miRNA processing that contributes to tumorigenesis.

7.
Exp Neurol ; 371: 114585, 2024 01.
Article in English | MEDLINE | ID: mdl-37884185

ABSTRACT

AIMS: Osteopontin (OPN) has demonstrated neuroprotective effects in various stroke models. Its role in neuroinflammation after brain injury remains to be elucidated. This study aims to clarify the effect of OPN on neuroinflammation, particularly on the functional states of microglia after subarachnoid hemorrhage (SAH). METHODS: 77 rats were randomly divided into the following groups: Sham, SAH 24 h, SAH + rOPN, SAH + Vehicle (PBS), SAH + OPN siRNA, and SAH + Scr siRNA, SAH + rOPN+Fib-14 and SAH + rOPN+DMSO. Modified Garcia and beam balance tests were used to evaluate neurobehavioral outcomes. Semi-quantitative immunofluorescence staining was performed to measure expression of myeloperoxidase (MPO) and microglia activation state markers CD16, CD206 after SAH and recombinant OPN treatment. The quantification of microglia activation and functional markers CD16, CD206, TNF-α and IL-10 were further evaluated using Western-blotting. RESULTS: Nasal administration of rOPN improved neurological dysfunction, attenuated neutrophil infiltration, and decreased expression of phenotypic and functional markers of pro-inflammatory microglia CD16 and TNF-α. It also promoted an anti-inflammatory microglial state, as evidenced by increased expression of CD206 and IL-10. Furthermore, after blocking the phosphorylation of FAK signaling, the effects of rOPN on microglial activation states were partially reversed. The downstream pathways of STAT3 and NF-κB also exhibited consistent changes, suggesting the involvement of the STAT3 and NF-κB pathways in OPN's modulation of microglial activation via integrin-FAK signaling. CONCLUSION: OPN attenuates inflammatory responses after SAH by promoting an anti-inflammatory microglial state, potentially mediated through the integrin-FAK-STAT3 and NF-κB signaling pathways.


Subject(s)
Osteopontin , Subarachnoid Hemorrhage , Rats , Animals , Osteopontin/therapeutic use , Osteopontin/metabolism , Osteopontin/pharmacology , Rats, Sprague-Dawley , NF-kappa B/metabolism , Interleukin-10 , Microglia/metabolism , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/metabolism , Tumor Necrosis Factor-alpha/metabolism , Neuroinflammatory Diseases , Anti-Inflammatory Agents/pharmacology , Integrins/metabolism , Integrins/therapeutic use , RNA, Small Interfering/pharmacology , Disease Models, Animal
8.
Waste Manag ; 172: 90-100, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37879269

ABSTRACT

Polyethylene terephthalate (PET) is a widely used packaging material and has high value in recycling. However, under China's dominant informal recycling system, most PET bottles are downcycled into fibers. The deposit-refund system (DRS) is considered a feasible mechanism to facilitate the high-value recycling of PET bottles. To comparatively evaluate the environmental performance [reduction of greenhouse gas (GHG) and pollutant emissions] under different scenarios using life cycle assessments, including the current system based on informal recycling, an improved system with a larger contribution from the source separation of municipal solid waste, and evolving systems with DRS application, five scenarios were set up. The DRS can reduce GHG emissions and the comprehensive environmental impact by 0.538 kg CO2 /kg PET bottles and 1.73 × 10-3 PE/kg PET bottles, respectively, compared to informal recycling. It can be concluded that the DRS-based recycling approach and the bottle-to-bottle recycling provide the substantial emission reduction potential of GHGs and pollutants.


Subject(s)
Greenhouse Gases , Waste Management , Polyethylene Terephthalates , Environment , Solid Waste , Recycling , China
9.
Endocr Pract ; 29(9): 681-685, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37301375

ABSTRACT

OBJECTIVE: The effects of diabetes medications on COVID-19 hospitalization outcomes have not been consistent. We sought to determine the effect of metformin, dipeptidyl peptidase-4 inhibitors (DPP-4i), and insulin on admission to the intensive care unit (ICU), need for assisted ventilation, development of renal insufficiency, and mortality in patients admitted with COVID-19 infection after controlling for clinical variables and other relevant diabetes-related medications in patients with type 2 diabetes mellitus (DM). METHODS: This was a retrospective study of patients hospitalized with COVID-19 from a single hospital system. Univariate and multivariate analyses were performed that included demographic data, glycated hemoglobin, kidney function, smoking status, insurance, Charlson comorbidity index, number of diabetes medications, and use of angiotensin-converting enzyme inhibitors and statin prior to admission and glucocorticoids during admission. RESULTS: A total of 529 patients with type 2 DM were included in our final analysis. Neither metformin nor DPP4i prescription was associated with ICU admission, need for assisted ventilation, or mortality. Insulin prescription was associated with increased ICU admission but not with need for assisted ventilation or mortality. There was no association of any of these medications with development of renal insufficiency. CONCLUSIONS: In this population, limited to type 2 DM and controlled for multiple variables that have not been consistently studied (such as a measure of general health, glycated hemoglobin, and insurance status), insulin prescription was associated with increased ICU admission. Metformin and DPP4i prescriptions did not have an association with the outcomes.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Dipeptidases , Dipeptidyl-Peptidase IV Inhibitors , Metformin , Renal Insufficiency , Humans , Metformin/therapeutic use , Diabetes Mellitus, Type 2/complications , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Dipeptidases/therapeutic use , Retrospective Studies , Glycated Hemoglobin , COVID-19/complications , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Insulin, Regular, Human/therapeutic use , Hospitals , Renal Insufficiency/chemically induced , Renal Insufficiency/complications , Renal Insufficiency/drug therapy
10.
Cell ; 186(15): 3208-3226.e27, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37379838

ABSTRACT

N7-methylguanosine (m7G) modification, routinely occurring at mRNA 5' cap or within tRNAs/rRNAs, also exists internally in messenger RNAs (mRNAs). Although m7G-cap is essential for pre-mRNA processing and protein synthesis, the exact role of mRNA internal m7G modification remains elusive. Here, we report that mRNA internal m7G is selectively recognized by Quaking proteins (QKIs). By transcriptome-wide profiling/mapping of internal m7G methylome and QKI-binding sites, we identified more than 1,000 high-confidence m7G-modified and QKI-bound mRNA targets with a conserved "GANGAN (N = A/C/U/G)" motif. Strikingly, QKI7 interacts (via C terminus) with the stress granule (SG) core protein G3BP1 and shuttles internal m7G-modified transcripts into SGs to regulate mRNA stability and translation under stress conditions. Specifically, QKI7 attenuates the translation efficiency of essential genes in Hippo signaling pathways to sensitize cancer cells to chemotherapy. Collectively, we characterized QKIs as mRNA internal m7G-binding proteins that modulate target mRNA metabolism and cellular drug resistance.


Subject(s)
DNA Helicases , RNA Helicases , DNA Helicases/metabolism , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , RNA Helicases/metabolism , Stress Granules , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , GTP-Binding Proteins/metabolism , RNA, Messenger/metabolism , Cytoplasmic Granules/metabolism
11.
Sci Transl Med ; 15(689): eabq8513, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36989375

ABSTRACT

Although the overall survival rate of B cell acute lymphoblastic leukemia (B-ALL) in childhood is more than 80%, it is merely 30% in refractory/relapsed and adult patients with B-ALL. This demonstrates a need for improved therapy targeting this subgroup of B-ALL. Here, we show that the ten-eleven translocation 1 (TET1) protein, a dioxygenase involved in DNA demethylation, is overexpressed and plays a crucial oncogenic role independent of its catalytic activity in B-ALL. Consistent with its oncogenic role in B-ALL, overexpression of TET1 alone in normal precursor B cells is sufficient to transform the cells and cause B-ALL in mice within 3 to 4 months. We found that TET1 protein is stabilized and overexpressed because of its phosphorylation mediated by protein kinase C epsilon (PRKCE) and ATM serine/threonine kinase (ATM), which are also overexpressed in B-ALL. Mechanistically, TET1 recruits STAT5B to the promoters of CD72 and JCHAIN and promotes their transcription, which in turn promotes B-ALL development. Destabilization of TET1 protein by treatment with PKC or ATM inhibitors (staurosporine or AZD0156; both tested in clinical trials), or by pharmacological targeting of STAT5B, greatly decreases B-ALL cell viability and inhibits B-ALL progression in vitro and in vivo. The combination of AZD0156 with staurosporine or vincristine exhibits a synergistic effect on inhibition of refractory/relapsed B-ALL cell survival and leukemia progression in PDX models. Collectively, our study reveals an oncogenic role of the phosphorylated TET1 protein in B-ALL independent of its catalytic activity and highlights the therapeutic potential of targeting TET1 signaling for the treatment of refractory/relapsed B-ALL.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins , Animals , Mice , Proto-Oncogene Proteins/metabolism , Phosphorylation , Staurosporine , Signal Transduction , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , DNA-Binding Proteins/metabolism
13.
Sens Actuators B Chem ; 3782023 Mar 01.
Article in English | MEDLINE | ID: mdl-36644326

ABSTRACT

As an easily disposable substrate with a microporous texture, paper is a well-suited, generic substrate to build analytical devices for studying bacteria. Using a multi-pass lasing process, cellulose-based laser-induced graphene (cLIG) with a sheet resistance of 43.7 ± 2.3 Ωsq-1 is developed and utilized in the fabrication of low-cost and environmentally-friendly paper sensor arrays. Two case studies with Pseudomonas aeruginosa and Escherichia coli demonstrate the practicality of the cLIG sensors for the electrochemical analysis of bacteria. The first study measures the time-dependent profile of phenazines released from both planktonic (up to 60 h) and on-chip-grown (up to 22 h) Pseudomonas aeruginosa cultures. While similarities do exist, marked differences in phenazine production are seen with cells grown directly on cLIG compared to the planktonic culture. Moreover, in planktonic cultures, pyocyanin levels increase early on and plateau around 20 h, while optical density measurements increase monotonically over the duration of testing. The second study monitors the viability and metabolic activity of Escherichia coli using a resazurin-based electrochemical assay. These results demonstrate the utility of cLIG paper sensors as an inexpensive and versatile platform for monitoring bacteria and could enable new opportunities in high-throughput antibiotic susceptibility testing, ecological studies, and biofilm studies.

14.
J Diabetes Complications ; 37(2): 108405, 2023 02.
Article in English | MEDLINE | ID: mdl-36669324

ABSTRACT

AIMS: To investigate the prevalence and clinical risk factors for non-alcoholic fatty liver disease (NAFLD) in type 1 diabetes (T1DM) by liver scores. METHODS: A retrospective, unicenter, cross-sectional analysis was performed of adults with T1DM from 2015 to 2018. Steatosis scores (hepatic steatosis index-HSI, Framingham steatosis index-FSI) and fibrosis scores (FIB-4 index, AST-to-platelet ratio index-APRI) were associated with clinical parameters. RESULTS: We identified 447 patients, 38 ± 14.5 yrs, 54 % female, BMI 28 ± 5.9 kg/m2. Liver steatosis was prevalent at 61 % by HSI ≥ 36 and 52 % by FSI ≥ 23. A majority of these individuals had normal liver transaminase levels. The presence of advanced fibrosis was 4 % by APRI > 0.7 and 4 % by FIB-4 > 2.67. BMI ≥ 25 kg/m2 correlated with steatosis scores (P < 0.001) but not fibrosis scores. Older age (≥40 yrs), hypertension, dyslipidemia, and history of cardiovascular disease were associated with steatosis markers. Only 21 % had any abdominal imaging, 2 % had hepatology referral and 1 % had a liver biopsy. Glucagon-like peptide-1 agonist was prescribed in 5 % and thiazolidinedione in 4 %. CONCLUSION: Liver scores indicating steatosis but not fibrosis is common in adults with T1DM with obesity and/or metabolic syndrome, and is associated with older age, hypertension, and dyslipidemia. NAFLD is under-diagnosed and under-investigated; a minority of patients have had any liver evaluation or treatment.


Subject(s)
Diabetes Mellitus, Type 1 , Non-alcoholic Fatty Liver Disease , Adult , Female , Humans , Male , Aspartate Aminotransferases , Cross-Sectional Studies , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/epidemiology , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Liver Cirrhosis/epidemiology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Prevalence , Retrospective Studies , Young Adult , Middle Aged
15.
Nucleic Acids Res ; 51(D1): D46-D56, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36399495

ABSTRACT

Non-coding RNAs (ncRNAs) are emerging as key regulators of various biological processes. Although thousands of ncRNAs have been discovered, the transcriptional mechanisms and networks of the majority of ncRNAs have not been fully investigated. In this study, we updated ChIPBase to version 3.0 (https://rnasysu.com/chipbase3/) to provide the most comprehensive transcriptional regulation atlas of ncRNAs and protein-coding genes (PCGs). ChIPBase has identified ∼151 187 000 regulatory relationships between ∼171 600 genes and ∼3000 regulators by analyzing ∼55 000 ChIP-seq datasets, which represent a 30-fold expansion. Moreover, we de novo identified ∼29 000 motif matrices of transcription factors. In addition, we constructed a novel 'Enhancer' module to predict ∼1 837 200 regulation regions functioning as poised, active or super enhancers under ∼1300 conditions. Importantly, we constructed exhaustive coexpression maps between regulators and their target genes by integrating expression profiles of ∼65 000 normal and ∼15 000 tumor samples. We built a 'Disease' module to obtain an atlas of the disease-associated variations in the regulation regions of genes. We also constructed an 'EpiInter' module to explore potential interactions between epitranscriptome and epigenome. Finally, we designed 'Network' module to provide extensive and gene-centred regulatory networks. ChIPBase will serve as a useful resource to facilitate integrative explorations and expand our understanding of transcriptional regulation.


Subject(s)
Gene Expression Regulation , RNA, Untranslated , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Transcription Factors/metabolism , Gene Regulatory Networks
16.
Sci China Life Sci ; 66(4): 800-818, 2023 04.
Article in English | MEDLINE | ID: mdl-36323972

ABSTRACT

2'-O-methylation (Nm) is one of the most abundant RNA epigenetic modifications and plays a vital role in the post-transcriptional regulation of gene expression. Current Nm mapping approaches are normally limited to highly abundant RNAs and have significant technical hurdles in mRNAs or relatively rare non-coding RNAs (ncRNAs). Here, we developed a new method for enriching Nm sites by using RNA exoribonuclease and periodate oxidation reactivity to eliminate 2'-hydroxylated (2'-OH) nucleosides, coupled with sequencing (Nm-REP-seq). We revealed several novel classes of Nm-containing ncRNAs as well as mRNAs in humans, mice, and drosophila. We found that some novel Nm sites are present at fixed positions in different tRNAs and are potential substrates of fibrillarin (FBL) methyltransferase mediated by snoRNAs. Importantly, we discovered, for the first time, that Nm located at the 3'-end of various types of ncRNAs and fragments derived from them. Our approach precisely redefines the genome-wide distribution of Nm and provides new technologies for functional studies of Nm-mediated gene regulation.


Subject(s)
Exoribonucleases , RNA, Untranslated , Humans , Animals , Mice , Exoribonucleases/genetics , Exoribonucleases/metabolism , Methylation , RNA, Untranslated/genetics , Base Sequence , RNA, Small Nucleolar/metabolism , RNA, Messenger/genetics
17.
Cancer Cell ; 40(12): 1566-1582.e10, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36306790

ABSTRACT

N6-Methyladenosine (m6A) modification and its modulators play critical roles and show promise as therapeutic targets in human cancers, including acute myeloid leukemia (AML). IGF2BP2 was recently reported as an m6A binding protein that enhances mRNA stability and translation. However, its function in AML remains largely elusive. Here we report the oncogenic role and the therapeutic targeting of IGF2BP2 in AML. High expression of IGF2BP2 is observed in AML and associates with unfavorable prognosis. IGF2BP2 promotes AML development and self-renewal of leukemia stem/initiation cells by regulating expression of critical targets (e.g., MYC, GPT2, and SLC1A5) in the glutamine metabolism pathways in an m6A-dependent manner. Inhibiting IGF2BP2 with our recently identified small-molecule compound (CWI1-2) shows promising anti-leukemia effects in vitro and in vivo. Collectively, our results reveal a role of IGF2BP2 and m6A modification in amino acid metabolism and highlight the potential of targeting IGF2BP2 as a promising therapeutic strategy in AML.


Subject(s)
Glutamine , Leukemia, Myeloid, Acute , Humans , Glutamine/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , RNA Stability , Prognosis , Minor Histocompatibility Antigens , Amino Acid Transport System ASC/genetics , Amino Acid Transport System ASC/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
18.
N Engl J Med ; 387(13): 1161-1172, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36170500

ABSTRACT

BACKGROUND: Currently available semiautomated insulin-delivery systems require individualized insulin regimens for the initialization of therapy and meal doses based on carbohydrate counting for routine operation. In contrast, the bionic pancreas is initialized only on the basis of body weight, makes all dose decisions and delivers insulin autonomously, and uses meal announcements without carbohydrate counting. METHODS: In this 13-week, multicenter, randomized trial, we randomly assigned in a 2:1 ratio persons at least 6 years of age with type 1 diabetes either to receive bionic pancreas treatment with insulin aspart or insulin lispro or to receive standard care (defined as any insulin-delivery method with unblinded, real-time continuous glucose monitoring). The primary outcome was the glycated hemoglobin level at 13 weeks. The key secondary outcome was the percentage of time that the glucose level as assessed by continuous glucose monitoring was below 54 mg per deciliter; the prespecified noninferiority limit for this outcome was 1 percentage point. Safety was also assessed. RESULTS: A total of 219 participants 6 to 79 years of age were assigned to the bionic-pancreas group, and 107 to the standard-care group. The glycated hemoglobin level decreased from 7.9% to 7.3% in the bionic-pancreas group and did not change (was at 7.7% at both time points) in the standard-care group (mean adjusted difference at 13 weeks, -0.5 percentage points; 95% confidence interval [CI], -0.6 to -0.3; P<0.001). The percentage of time that the glucose level as assessed by continuous glucose monitoring was below 54 mg per deciliter did not differ significantly between the two groups (13-week adjusted difference, 0.0 percentage points; 95% CI, -0.1 to 0.04; P<0.001 for noninferiority). The rate of severe hypoglycemia was 17.7 events per 100 participant-years in the bionic-pancreas group and 10.8 events per 100 participant-years in the standard-care group (P = 0.39). No episodes of diabetic ketoacidosis occurred in either group. CONCLUSIONS: In this 13-week, randomized trial involving adults and children with type 1 diabetes, use of a bionic pancreas was associated with a greater reduction than standard care in the glycated hemoglobin level. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and others; ClinicalTrials.gov number, NCT04200313.).


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemic Agents , Insulin Aspart , Insulin Infusion Systems , Insulin Lispro , Adolescent , Adult , Aged , Bionics/instrumentation , Blood Glucose/analysis , Blood Glucose Self-Monitoring/instrumentation , Blood Glucose Self-Monitoring/methods , Child , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/drug therapy , Glycated Hemoglobin/analysis , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Insulin/administration & dosage , Insulin/adverse effects , Insulin/therapeutic use , Insulin Aspart/administration & dosage , Insulin Aspart/adverse effects , Insulin Aspart/therapeutic use , Insulin Infusion Systems/adverse effects , Insulin Lispro/administration & dosage , Insulin Lispro/adverse effects , Insulin Lispro/therapeutic use , Middle Aged , Young Adult
19.
Diabetes Technol Ther ; 24(10): 697-711, 2022 10.
Article in English | MEDLINE | ID: mdl-36173236

ABSTRACT

Objective: To evaluate the insulin-only configuration of the iLet® bionic pancreas (BP) using insulin aspart or insulin lispro in adults with type 1 diabetes (T1D). Methods: In this multicenter, randomized, controlled trial, 161 adults with T1D (18-79 years old, baseline HbA1c 5.5%-13.1%, 32% using multiple daily injections, 27% using a pump without automation, 5% using a pump with predictive low glucose suspend, and 36% using a hybrid closed loop system before the study) were randomly assigned 2:1 to use the BP (N = 107) with insulin aspart or insulin lispro (BP group) or a standard-of-care (SC) control group (N = 54) using their usual insulin delivery plus continuous glucose monitoring (CGM). The primary outcome was HbA1c at 13 weeks. Results: Mean HbA1c decreased from 7.6% ± 1.2% at baseline to 7.1% ± 0.6% at 13 weeks with BP versus 7.6% ± 1.2% to 7.5% ± 0.9% with SC (adjusted difference = -0.5%, 95% confidence interval -0.6% to -0.3%, P < 0.001). Over 13 weeks, mean time in range 70-180 mg/dL (TIR) increased by 11% (2.6 h/d) and mean CGM glucose was reduced by 16 mg/dL with BP compared with SC (P < 0.001). Improvement in these metrics was seen during the first day of BP use and by the end of the first week reached levels that remained relatively stable through 13 weeks. Analyses of time >180 mg/dL, time >250 mg/dL, and standard deviation of CGM glucose all favored the BP group (P < 0.001). The CGM-measured hypoglycemia was low at baseline (median time <54 mg/dL of 0.21% [3 min/d] for the BP group and 0.11% [1.6 min/d] for the SC group) and not significantly different between groups over the 13 weeks (P = 0.51 for time <70 mg/dL and 0.33 for time <54 mg/dL). There were 7 (6.5% of 107 participants) severe hypoglycemic events in the BP group and 2 events in the SC group (1.9% of 54 participants, P = 0.40). Conclusions: In adults with T1D, use of the BP with insulin aspart or insulin lispro improved HbA1c, TIR, and hyperglycemic metrics without increasing CGM-measured hypoglycemia compared with standard of care. Clinical Trial Registry: clinicaltrials.gov; NCT04200313.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Adolescent , Adult , Aged , Bionics , Blood Glucose/analysis , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/drug therapy , Glycated Hemoglobin/analysis , Humans , Hypoglycemia/prevention & control , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin Aspart , Insulin Lispro , Insulin, Regular, Human , Middle Aged , Pancreas , Young Adult
20.
Theranostics ; 12(13): 5727-5743, 2022.
Article in English | MEDLINE | ID: mdl-35966596

ABSTRACT

RNA N6 -methyladenosine (m6A) modification and its regulators fine tune gene expression and contribute to tumorigenesis. This study aims to uncover the essential role and the underlying molecular mechanism(s) of the m6A reader YTHDC1 in promoting triple negative breast cancer (TNBC) metastasis. METHODS: In vitro and in vivo models were employed to determine the pathological function of YTHDC1 in TNBC metastasis. To identify bona fide YTHDC1 target RNAs, we conducted RNA-seq, m6A-seq, and RIP-seq, followed by integrative data analysis and validation assays. RESULTS: By analyzing The Cancer Genome Atlas (TCGA) dataset, we found that elevated expression of YTHDC1 is positively correlated with poor prognosis in breast cancer patients. Using a mammary fat pad mouse model of TNBC, YTHDC1 significantly promoted lung metastasis of TNBC cells. Through multiple transcriptome-wide sequencing and integrative data analysis, we revealed dysregulation of metastasis-related pathways following YTHDC1 depletion and identified SMAD3 as a bona fide YTHDC1 target RNA. Depletion of YTHDC1 caused nuclear retention of SMAD3 mRNA, leading to lower SMAD3 protein levels. Loss of YTHDC1 led to impaired TGF-ß-induced gene expression, leading to inhibition of epithelial-mesenchymal transition (EMT) and suppressed TNBC cell migration and invasion. SMAD3 overexpression was able to restore the response to TGF-ß in YTHDC1 depleted TNBC cells. Furthermore, we demonstrated that the oncogenic role of YTHDC1 is mediated through its recognition of m6A as m6A-binding defective mutants of YTHDC1 were unable to rescue the impaired cell migration and invasion of YTHDC1 knockout TNBC cells. CONCLUSIONS: We show that YTHDC1 plays a critical oncogenic role in TNBC metastasis through promoting the nuclear export and expression of SMAD3 to augment the TGF-ß signaling cascade. Overall, our study demonstrates that YTHDC1 is vital for TNBC progression by enhancing TNBC cell survival and TGF-ß-mediated EMT via SMAD3 to enable the formation of distant metastasis and highlights the therapeutic potential of targeting the YTHDC1/m6A/SMAD3 axis for TNBC treatment.


Subject(s)
Triple Negative Breast Neoplasms , Animals , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Humans , Mice , Nerve Tissue Proteins/metabolism , RNA , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Transforming Growth Factor beta/metabolism , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...