Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
World J Gastroenterol ; 29(31): 4744-4762, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37664157

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological entity characterized by intrahepatic ectopic steatosis. As a consequence of increased consumption of high-calorie diet and adoption of a sedentary lifestyle, the incidence of NAFLD has surpassed that of viral hepatitis, making it the most common cause of chronic liver disease globally. Huangqin decoction (HQD), a Chinese medicinal formulation that has been used clinically for thousands of years, has beneficial outcomes in patients with liver diseases, including NAFLD. However, the role and mechanism of action of HQD in lipid metabolism disorders and insulin resistance in NAFLD remain poorly understood. AIM: To evaluate the ameliorative effects of HQD in NAFLD, with a focus on lipid metabolism and insulin resistance, and to elucidate the underlying mechanism of action. METHODS: High-fat diet-induced NAFLD rats and palmitic acid (PA)-stimulated HepG2 cells were used to investigate the effects of HQD and identify its potential mechanism of action. Phytochemicals in HQD were analyzed by high-performance liquid chromatography (HPLC) to identify the key components. RESULTS: Ten primary chemical components of HQD were identified by HPLC analysis. In vivo, HQD effectively prevented rats from gaining body and liver weight, improved the liver index, ameliorated hepatic histological aberrations, decreased transaminase and lipid profile disorders, and reduced the levels of pro-inflammatory factors and insulin resistance. In vitro studies revealed that HQD effectively alleviated PA-induced lipid accumulation, inflammation, and insulin resistance in HepG2 cells. In-depth investigation revealed that HQD triggers Sirt1/NF-κB pathway-modulated lipogenesis and inflammation, contributing to its beneficial actions, which was further corroborated by the addition of the Sirt1 antagonist EX-527 that compromised the favorable effects of HQD. CONCLUSION: In summary, our study confirmed that HQD mitigates lipid metabolism disorders and insulin resistance in NAFLD by triggering the Sirt1/NF-κB pathway.


Subject(s)
Insulin Resistance , Lipid Metabolism Disorders , Non-alcoholic Fatty Liver Disease , Animals , Rats , NF-kappa B , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Scutellaria baicalensis , Lipid Metabolism , Sirtuin 1 , Inflammation , Lipids
2.
Neurochem Res ; 47(2): 315-326, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34498160

ABSTRACT

The effects of general anesthetics on the developing brain have aroused much attention in recent years. Sevoflurane, a commonly used inhalation anesthetic especially in pediatric anesthesia, can induce developmental neurotoxicity. In this study, the differentially expressed mRNAs in the hippocampus of newborn rats exposed to 3% sevoflurane for 6 h were detected by RNA-Sequencing. Those data indicated that the mRNA of Klotho was increased after exposure to sevoflurane. Moreover, the protein expression of Klotho was assayed by Western Blot. Besides over-expression and under-expression of Klotho protein, we also detected changes of cell proliferation, ROS, JC-1, and Bcl-2/Bax ratio in PC12 cells exposed to sevoflurane. After exposure to 3% sevoflurane, the expression of Klotho protein increased in the hippocampus of neonatal rats. In PC12 cells, exposure to sevoflurane could increase cellular ROS level, reduce mitochondrial membrane potential and Bcl-2/Bax ratio. While overexpression of Klotho alleviated the above changes, knockdown of Klotho aggravated the injury of sevoflurane. Klotho protein could reduce oxidative stress and mitochondrial injury induced by sevoflurane in the neuron.


Subject(s)
Anesthetics, Inhalation , Methyl Ethers , Anesthetics, Inhalation/toxicity , Animals , Animals, Newborn , Apoptosis , Hippocampus/metabolism , Humans , Methyl Ethers/toxicity , Neurons/metabolism , Rats , Sevoflurane/toxicity
3.
Neural Regen Res ; 15(12): 2306-2317, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32594054

ABSTRACT

Multiple types of stem cells have been proposed for the treatment of spinal cord injury, but their comparative information remains elusive. In this study, a rat model of T10 contusion spinal cord injury was established by the impactor method. Human umbilical cord-derived mesenchymal stem cells (UCMSCs) or human adipose tissue-derived mesenchymal stem cells (ADMSCs) (2.5 µL/injection site, 1 × 105 cells/µL) was injected on rostral and caudal of the injury segment on the ninth day after injury. Rats injected with mesenchymal stem cell culture medium were used as controls. Our results show that although transplanted UCMSCs and ADMSCs failed to differentiate into neurons or glial cells in vivo, both significantly improved motor and sensory function. After spinal cord injury, UCMSCs and ADMSCs similarly promoted spinal neuron survival and axonal regeneration, decreased glial scar and lesion cavity formation, and reduced numbers of active macrophages. Bio-Plex analysis of spinal samples showed a specific increase of interleukin-10 and decrease of tumor necrosis factor α in the ADMSC group, as well as a downregulation of macrophage inflammatory protein 3α in both UCMSC and ADMSC groups at 3 days after cell transplantation. Upregulation of interleukin-10 and interleukin-13 was observed in both UCMSC and ADMSC groups at 7 days after cell transplantation. Isobaric tagging for relative and absolute quantitation proteomics analyses showed that UCMSCs and ADMSCs induced changes of multiple genes related to axonal regeneration, neurotrophy, and cell apoptosis in common and specific manners. In conclusion, UCMSC and ADMSC transplants yielded quite similar contributions to motor and sensory recovery after spinal cord injury via anti-inflammation and improved axonal growth. However, there were some differences in cytokine and gene expression induced by these two types of transplanted cells. Animal experiments were approved by the Laboratory Animal Ethics Committee at Jinan University (approval No. 20180228026) on February 28, 2018, and the application of human stem cells was approved by the Medical Ethics Committee of Medical College of Jinan University of China (approval No. 2016041303) on April 13, 2016.

4.
Neural Regen Res ; 15(12): 2335-2343, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32594058

ABSTRACT

SHANK2 is a scaffold protein that serves as a protein anchor at the postsynaptic density in neurons. Genetic variants of SHANK2 are strongly associated with synaptic dysfunction and the pathophysiology of autism spectrum disorder. Recent studies indicate that early neuronal developmental defects play a role in the pathogenesis of autism spectrum disorder, and that insulin-like growth factor 1 has a positive effect on neurite development. To investigate the effects of SHANK2 knockdown on early neuronal development, we generated a sparse culture system using human induced pluripotent stem cells, which then differentiated into neural progenitor cells after 3-14 days in culture, and which were dissociated into single neurons. Neurons in the experimental group were infected with shSHANK2 lentivirus carrying a red fluorescent protein reporter (shSHANK2 group). Control neurons were infected with scrambled shControl lentivirus carrying a red fluorescent protein reporter (shControl group). Neuronal somata and neurites were reconstructed based on the lentiviral red fluorescent protein signal. Developmental dendritic and motility changes in VGLUT1+ glutamatergic neurons and TH+ dopaminergic neurons were then evaluated in both groups. Compared with shControl VGLUT1+ neurons, the dendritic length and arborizations of shSHANK2 VGLUT1+ neurons were shorter and fewer, while cell soma speed was higher. Furthermore, dendritic length and arborization were significantly increased after insulin-like growth factor 1 treatment of shSHANK2 neurons, while cell soma speed remained unaffected. These results suggest that insulin-like growth factor 1 can rescue morphological defects, but not the change in neuronal motility. Collectively, our findings demonstrate that SHANK2 deficiency perturbs early neuronal development, and that IGF1 can partially rescue the neuronal defects caused by SHANK2 knockdown. All experimental procedures and protocols were approved by the Laboratory Animal Ethics Committee of Jinan University, China (approval No. 20170228010) on February 28, 2017.

5.
Zhongguo Dang Dai Er Ke Za Zhi ; 21(9): 898-903, 2019 Sep.
Article in Chinese | MEDLINE | ID: mdl-31506150

ABSTRACT

OBJECTIVE: To study the predictive value of Pediatric Age-adapted Sequential Organ Failure Assessment Score (pSOFA), Pediatric Risk of Mortality Score III (PRISM III), and Pediatric Critical Illness Score (PCIS) in children with severe sepsis. METHODS: A retrospective analysis was performed for the clinical data of 193 hospitalized children with severe sepsis. According to the final outcome, these children were divided into a survival group with 151 children and a death group with 42 children. The scores of pSOFA, PRISM III, and PCIS were determined according to the worst values of each index within 24 hours after admission. The receiver operating characteristic (ROC) curve was used to analyze the efficiency of each scoring system in predicting the risk of death due to sepsis. Smooth curve fitting was used to analyze the correlation between the three scoring systems and the threshold effect of each scoring system. Decision curve analysis (DCA) was used to evaluate the application value of each scoring system. RESULTS: The ROC analysis showed that PCIS and pSOFA had a similar predictive value (P=0.182) and that PRISM III and pSOFA had a similar predictive value (P=0.210), while PRISM III had a better predictive value than PCIS (P=0.045). PRISM III had the highest degree of fitting with prognosis, followed by pSOFA and PCIS. The DCA analysis showed that when the risk of death was 0.4 and 0.6 in children with severe sepsis and the three scoring systems were used as the basis for emergency intervention decision-making, pSOFA achieved the highest standardized net benefit, followed by PRISM III and PCIS. CONCLUSIONS: All three scoring systems have a certain value in predicting the prognosis of children with severe sepsis, and pSOFA has a better value than PRISM III and PCIS.


Subject(s)
Organ Dysfunction Scores , Sepsis , Child , Critical Illness , Humans , Prognosis , ROC Curve , Retrospective Studies
6.
Pest Manag Sci ; 73(7): 1511-1528, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27860165

ABSTRACT

BACKGROUND: Many species of Tephritidae are damaging to fruit, which might negatively impact international fruit trade. Automatic or semi-automatic identification of fruit flies are greatly needed for diagnosing causes of damage and quarantine protocols for economically relevant insects. RESULTS: A fruit fly image identification system named AFIS1.0 has been developed using 74 species belonging to six genera, which include the majority of pests in the Tephritidae. The system combines automated image identification and manual verification, balancing operability and accuracy. AFIS1.0 integrates image analysis and expert system into a content-based image retrieval framework. In the the automatic identification module, AFIS1.0 gives candidate identification results. Afterwards users can do manual selection based on comparing unidentified images with a subset of images corresponding to the automatic identification result. The system uses Gabor surface features in automated identification and yielded an overall classification success rate of 87% to the species level by Independent Multi-part Image Automatic Identification Test. CONCLUSION: The system is useful for users with or without specific expertise on Tephritidae in the task of rapid and effective identification of fruit flies. It makes the application of computer vision technology to fruit fly recognition much closer to production level. © 2016 Society of Chemical Industry.


Subject(s)
Image Processing, Computer-Assisted/instrumentation , Image Processing, Computer-Assisted/methods , Tephritidae/classification , Animals , Expert Systems , Quarantine
7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(2): 568-72, 2015 Feb.
Article in Chinese | MEDLINE | ID: mdl-25970934

ABSTRACT

A novel visible spectrum imaging spectrograph optical system was proposed based on the negative dispersion, the arbitrary phase modulation characteristics of diffractive optical element and the aberration correction characteristics of freeform optical element. The double agglutination lens was substituted by a hybrid refractive/diffractive lens based on the negative dispersion of diffractive optical element. Two freeform optical elements were used in order to correct some aberration based on the aberration correction characteristics of freeform optical element. An example and frondose design process were presented. When the design parameters were uniform, compared with the traditional system, the novel visible spectrum imaging spectrograph optical system's weight was reduced by 22.9%, the total length was reduced by 26.6%, the maximal diameter was reduced by 30.6%, and the modulation transfer function (MTF) in 1.0 field-of-view was improved by 0.35 with field-of-view improved maximally. The maximal distortion was reduced by 1.6%, the maximal longitudinal aberration was reduced by 56.4%, and the lateral color aberration was reduced by 59. 3%. From these data, we know that the performance of the novel system was advanced quickly and it could be used to put forward a new idea for modern visible spectrum imaging spectrograph optical system design.

8.
Zootaxa ; 3647: 194-200, 2013.
Article in English | MEDLINE | ID: mdl-26295105

ABSTRACT

One new species, Bactrocera (Zeugodacus) anala Chen et Zhou, sp.nov, and one newly recorded species, B. (Z.) armillata (Hering, 1938), from China are described and illustrated. The male of B. (Z.) armillata (Hering) was discovered for the first time and as a result the species is moved from subgenus Bactrocera to subgenus Zeugodacus. In addition, the morphological differences and comparing illustrations of B. (Z.) adusta (Wang et Zhao) and B. (Z.) biguttata (Bezzi), are provided.


Subject(s)
Tephritidae/anatomy & histology , Tephritidae/classification , Animal Distribution , Animals , China , Female , Male , Species Specificity , Tephritidae/physiology
9.
J Clin Neurosci ; 17(1): 87-91, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19969463

ABSTRACT

This study shows the expression pattern of calcitonin gene-related peptide (CGRP) in the anterior and posterior horns of the spinal cord after brachial plexus injury. The animals were divided into three injury groups: group 1, right C(7) anterior root avulsion; group 2, right C(7) anterior root avulsion and cut right C(5)-T(1) posterior roots; and group 3, right C(7) anterior root avulsion plus right hemitransection between the C(5) and C(6) segments of the spinal cord. These animals were killed at 1, 3, 7 and 14 days after injury. In the anterior horn of all three injured groups, the expression of CGRP increased progressively from day 1 to day 7 (p<0.05), peaked on day 7, and then began to decrease slowly. In the posterior horn of all three injured groups, the expression of CGRP decreased gradually from day 1 to day 14 after the operation and was significantly lower on day 14 compared to day 1. At each time point (days 1, 3, 7 and 14), the expression of CGRP was the highest in group 1 and the lowest in group 2, with significant differences among the three groups. The CGRP in the anterior horn of the spinal cord was derived from the cell bodies of motor neurons and was possibly involved in repair mechanisms and regeneration after nerve injury. However, the CGRP in the posterior horn was mainly derived from the posterior root ganglion and was possibly associated with the conduction of noxious stimulation.


Subject(s)
Brachial Plexus Neuropathies/metabolism , Calcitonin Gene-Related Peptide/metabolism , Ganglia, Spinal/metabolism , Nociceptors/metabolism , Spinal Cord/metabolism , Animals , Anterior Horn Cells/cytology , Anterior Horn Cells/metabolism , Biomarkers/analysis , Biomarkers/metabolism , Brachial Plexus Neuropathies/pathology , Brachial Plexus Neuropathies/physiopathology , Denervation , Disease Models, Animal , Ganglia, Spinal/cytology , Ganglia, Spinal/physiopathology , Immunohistochemistry , Male , Motor Neurons/cytology , Motor Neurons/metabolism , Nerve Regeneration/physiology , Nociceptors/cytology , Pain/metabolism , Pain/physiopathology , Posterior Horn Cells/cytology , Posterior Horn Cells/metabolism , Rats , Rats, Sprague-Dawley , Recovery of Function/physiology , Rhizotomy , Sensory Receptor Cells/cytology , Sensory Receptor Cells/metabolism , Spinal Cord/cytology , Spinal Cord/physiopathology , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...