Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Biotechnol J ; 19(5): e2400023, 2024 May.
Article in English | MEDLINE | ID: mdl-38719589

ABSTRACT

The discovery of antibiotics has noticeably promoted the development of human civilization; however, antibiotic resistance in bacteria caused by abusing and overusing greatly challenges human health and food safety. Considering the worsening situation, it is an urgent demand to develop emerging nontraditional technologies or methods to address this issue. With the expanding of synthetic biology, optogenetics exhibits a tempting prospect for precisely regulating gene expression in many fields. Consequently, it is attractive to employ optogenetics to reduce the risk of antibiotic resistance. Here, a blue light-controllable gene expression system was established in Escherichia coli based on a photosensitive DNA-binding protein (EL222). Further, this strategy was successfully applied to repress the expression of ß-lactamase gene (bla) using blue light illumination, resulting a dramatic reduction of ampicillin resistance in engineered E. coli. Moreover, blue light was utilized to induce the expression of the mechanosensitive channel of large conductance (MscL), triumphantly leading to the increase of streptomycin susceptibility in engineered E. coli. Finally, the increased susceptibility of ampicillin and streptomycin was simultaneously induced by blue light in the same E. coli cell, revealing the excellent potential of this strategy in controlling multidrug-resistant (MDR) bacteria. As a proof of concept, our work demonstrates that light can be used as an alternative tool to prolong the use period of common antibiotics without developing new antibiotics. And this novel strategy based on optogenetics shows a promising foreground to combat antibiotic resistance in the future.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Light , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Anti-Bacterial Agents/pharmacology , Optogenetics/methods , Gene Expression Regulation, Bacterial/drug effects , Ampicillin/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Drug Resistance, Bacterial/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Streptomycin/pharmacology , Blue Light
2.
Microorganisms ; 12(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38543657

ABSTRACT

Knock-out of genes of metabolic pathways is conventionally used in the metabolic engineering of microorganisms, but it is not applicable for genes of essential pathways. In order to avoid undesirable effects caused by gene deletion, it is attractive to develop riboswitches to dynamically control the metabolic pathways of microbial cell factories. In this regard, the aim of this study is to utilize the lysine riboswitch to control gene expressions of the biosynthetic pathways and by-pathways and thus improve lysine production in Corynebacterium glutamicum. To achieve this, a natural lysine riboswitch from Lactobacillus plantarum (LPRS) was first detected and then fused with RFP to test its functionality. After that, engineered lysine-activated (Lys-A) and lysine-repressed (Lys-R) riboswitches were successfully screened by dual genetic selection. Furthermore, the optimized A263 and R152 were applied to control the expression of aspartate kinase III and homoserine dehydrogenase in the lysine-producing strain C. glutamicum QW45, respectively. In contrast with QW45, the growth of the resulting A263-lysC mutant QW48 was similar to that of QW45; however, the growth of the resulting R357-hom mutant QW54 was slightly inhibited, indicating an inhibition of threonine biosynthesis caused by the riboswitch upon binding of intracellular lysine. Importantly, the lysine production of QW48 and QW54 was, respectively, 35% and 43% higher than that of the parent strain QW45, implying more metabolic flux directed into the lysine synthesis pathway. Finally, the engineered A263 and R357 were simultaneously applied to the same mutant QW55, which greatly improved lysine production. Thus, the approach demonstrated in this work could be principally used as a powerful tool to dynamically control any other undesired metabolic pathways.

3.
Lett Appl Microbiol ; 76(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37863833

ABSTRACT

Escherichia coli O157:H7 is a common pathogenic bacterium in food and water that can pose a threat to human health. The aim of this study was to develop loop-mediated isothermal amplification (LAMP) method for the detection of E. coli O157:H7 in food based on the specific gene Ecs_2840 and to construct rapid detection kits based on the established methods. Specifically, we established two methods of real-time fluorescent LAMP (RT-LAMP) and visual LAMP with calcein as an indicator. In pure bacterial culture, the cell sensitivity and genomic sensitivity of the RT-LAMP kit were 8.8 × 100 CFU ml-1 and 4.61 fg µl-1, respectively. The sensitivity of the visual LAMP kit was 2.35 × 100 CFU ml-1 and 4.61 fg µl-1. Both kits had excellent specificity and anti-interference performance. In addition, milk inoculated with 2.26 × 100 CFU ml-1E. coli O157:H7 could be detected within the reaction time after enrichment for 3 h. The results showed that the LAMP kits were rapid, sensitive, and specific for the detection of E. coli O157:H7 in food and had good application prospects in food safety surveillance.


Subject(s)
Escherichia coli O157 , Humans , Escherichia coli O157/genetics , Sensitivity and Specificity , Food Microbiology
4.
Food Sci Nutr ; 11(6): 3184-3202, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37324884

ABSTRACT

Hydroponics receives considerable attentions due to population expansion, soil pollution, and farmland scarcity. However, one significant problem is that its residual effluents are detrimental to the surrounding ecosystem. There is a dire need to find an organic, alternative, biodegradable substrate. Vermicompost tea (VCT) was investigated on its suitability as a hydroponic substrate to provide both nutritional and microbiological benefits. It was found VCT increased the biomass of maple peas (Pisum sativum var. arvense L.), increased stem length, raised the potassium ion content, and promoted the uptake of nitrogen by the roots. Meanwhile, the microorganisms associated with earthworm guts were detected in the maple peas root system, namely the inter-rhizosphere of maple peas, including Enterobacteriaceae, Pseudomonadaceae, and Flavobacteriaceae. The presence of these microorganisms in large number indicated the ability for VCT to retain earthworm intestinal microbes via intestinal tract movement, excreting, and other vital activities. In addition, Rhizobia spp., such as Burkholderiaceae and Rhizobiaceae were also identified in VCT. They are critical for legumes as they can form root or stem nodule symbioses to produce growth hormone, vitamins, nitrogen fixation, and protection against plant stress. These findings are consistent with our chemical analysis that VCT-treated maple peas had increased nitrate and ammonium nitrogen content relative to the control in roots, stems, and leaves, hence increasing maple peas' biomass. The abundance and species of the inter-root bacterial population were found to change during the experimental period, indicating the importance of microbial balance to the growth and nutrient uptake of maple peas.

5.
Appl Microbiol Biotechnol ; 107(13): 4381-4393, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37204449

ABSTRACT

The purpose of this study was to provide new ideas for the antibacterial mechanism of monolauroyl-galactosylglycerol (MLGG) from the perspective of cell membranes. The changes in cell membrane properties of Bacillus cereus (B. cereus) CMCC 66,301 exposed to different concentrations (1 × MIC (minimum inhibitory concentration), 2 × MIC, 1 × MBC (minimum bacterial concentration)) of MLGG were evaluated. It was found that the lag phase of B. cereus cells was prolonged at low concentration MLGG (1 × MIC and 2 × MIC), while about 2 log CFU/mL reduction in B. cereus populations were observed when exposed to high concentration MLGG (1 × MBC). MLGG treated B. cereus displayed obvious membrane depolarization, while membrane permeability had no change using PI (propidium iodide) staining. Significant increase in the membrane fluidity in response to MLGG exposure occurred, which was consistent with the modification of membrane fatty acids compositions, where the relative content of straight-chain fatty acids (SCFAs) and unsaturated fatty acids (UFAs) increased, while branched-chain fatty acids (BCFAs) decreased significantly. The decreased transition Tm value and cell surface hydrophobicity was also observed. Additionally, effect of MLGG on bacterial membrane compositions were explored at the submolecular level by infrared spectroscopy. Resistance tests of B. cereus to MLGG had demonstrated the advantages of MLGG as a bacteriostatic agent. Collectively, these studies indicate that modifying the fatty acid composition and properties of cellular membranes through MLGG exposure is crucial for inhibiting bacteria growth, providing new insights into the antimicrobial mechanisms of MLGG. KEY POINTS: • Monolauroyl-galactosylglycerol inserted into B. cereus lipid bilayer membrane • Monolauroyl-galactosylglycerol treatment caused B. cereus membrane depolarization • Monolauroyl-galactosylglycerol resulted in B. cereus membrane fatty acids alteration.


Subject(s)
Bacillus cereus , Fatty Acids , Fatty Acids/metabolism , Fatty Acids, Unsaturated/metabolism , Cell Membrane , Membrane Fluidity
6.
World J Microbiol Biotechnol ; 39(5): 113, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36907904

ABSTRACT

Bacillomycin D is a cyclic antimicrobial lipopeptide that has excellent antifungal effects, but its application is limited due to its low yield. At present, it is not clear whether fatty acids regulate the synthesis of bacillomycin D. Therefore, the effects of nine fatty acids on the yield of bacillomycin D produced by Bacillus amyloliquefaciens fmbJ were studied. The results showed that sodium propionate, propionic acid, and butyric acid could increase the yield of bacillomycin D by 44, 40, and 10%, respectively. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect the expression levels of bacillomycin D synthesis gene, signaling factors and genes related to fatty acid metabolism, so as to explore the mechanism of sodium propionate regulating bacillomycin D synthesis. In conclusion, sodium propionate could accelerate the tricarboxylic acid cycle and promoted spore formation, cell movement, the secretion of extracellular protease and the transcription of bacillomycin D synthesis gene by upregulating the expression of signal factors degU, degQ, sigH, sigM and spo0A and ultimately promoted the synthesis of bacillomycin D. In this study, the mechanism of sodium propionate increasing bacillomycin D production was explored from multiple perspectives, which provided theoretical support for the large-scale production of bacillomycin D and was expected to promote its wide application in food, agriculture and medicine fields.


Subject(s)
Antimicrobial Cationic Peptides , Fatty Acids , Propionates
7.
Food Funct ; 14(4): 1909-1928, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36748225

ABSTRACT

Large preclinical evidence suggested that colitis was one of the risk factors for depression and probiotics were effective therapeutic agents to prevent the disease. The effect of Lacticaseibacillus rhamnosus Fmb14 on colitis-related depression-like behavior and its possible mechanisms were investigated. One week of DSS exposure led to the following changes in male C57BL/6N mice: a reduction in the movement distance from 2218 to 1299 cm, time in central areas from 23.6 s to 11.5 s, and time in the bright box from 217 s to 103 s, which were restored to 1816 cm, 18.4 s, and 181 s, respectively, with preadministration of Fmb14 for 8 weeks. All improvements provided by Fmb14 indicated a remarkable protective effect on depression-like behavior. Fmb14 first worked to repair intestinal barrier damage and the inflammatory response in the colon through ZO1 and Ocln enhancement and IL-1ß, NF-κB and IL-6 reduction, respectively. Second, dysbiosis of the gut microbiota was modulated by Fmb14, including reduction of Akkermansia (18.9% to 5.4%), Mucispirillum (0.6% to 0.1%) and Bifidobacterium (0.32% to 0.03%). Fmb14 supplementation ameliorates the brain inflammatory response via IL-18 and NF-κB reduction and improves the blood-brain barrier via increased levels of ZO1 and Ocln. Moreover, brain activity was facilitated by an increase in BDNF and dopamine and the downregulation of GABA in the Fmb14 group. As a consequence of the modulatory effect on the dysfunction of neurotransmitters and neuroinflammation, Fmb14 prevents neurodegeneration by inhibiting neuronal apoptosis and Nissl edema. In addition, the correlation analysis further demonstrated the preventative effect of Fmb14 on depression-like behavior through the microbiota-gut-brain axis. Together, these findings demonstrated the important role of Fmb14 in biological signal transduction over the microbiota-gut-brain axis to improve mood disorders.


Subject(s)
Colitis , Lacticaseibacillus rhamnosus , Mice , Male , Animals , Lacticaseibacillus , Depression/prevention & control , Brain-Gut Axis , NF-kappa B/metabolism , Mice, Inbred C57BL , Colitis/microbiology , Brain/metabolism , Colon/metabolism , Eating , Dextran Sulfate , Disease Models, Animal
8.
J Appl Microbiol ; 134(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36651814

ABSTRACT

AIMS: PgpH gene has an important regulatory role on bacterial physiological activity, but studies on its regulation mechanism on biofilm formation of Listeria monocytogenes are lacking. Our aim was to investigate the effect of pgpH gene deletion on biofilm formation in L. monocytogenes. METHODS AND RESULTS: The ΔpgpH deletion strain of L. monocytogenes LMB 33 426 was constructed by homologous recombination. Deletion of the pgpH gene resulted in a significant reduction in biofilm formation. The swimming ability of the ΔpgpH strain on semisolid plates was unchanged compared to the wild-type strain (WT), and the auto-aggregation capacity of L. monocytogenes was decreased. RNA-seq showed that ΔpgpH resulted in the differential expression of 2357 genes compared to WT. pgpH inactivation resulted in the significant downregulation of the cell wall formation-related genes dltC, dltD, walK, and walR and the flagellar assembly related genes fliG and motB. CONCLUSIONS: This study shows that the deletion of pgpH gene regulates biofilm formation and auto-aggregation ability of L. monocytogenes by affecting the expression of flagellar assembly and cell wall related genes. pgpH has a global regulatory effect on biofilm formation in L. monocytogenes.


Subject(s)
Biofilms , Listeria monocytogenes , Listeria monocytogenes/physiology , Gene Deletion , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
9.
J Agric Food Chem ; 71(3): 1464-1476, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36695046

ABSTRACT

A high-fat diet (HFD) easily contributes to the pathogenesis of obesity and insulin resistance. Obesity and insulin resistance have been clinical and public health challenges all over the world. Probiotic-fermented yogurt is one type of popular and functional beverage in people's daily lives. This study mainly explored the lipid- and glucose-lowering effects of Lactobacillus acidophilus NX2-6-fermented yogurt (LA-Y) in HFD-fed mice. The results showed that LA-Y administration improved the lipid profile in the serum and liver, reduced fasting blood glucose levels, and enhanced insulin sensitivity. Protein analysis showed that LA-Y treatment promoted fatty acid oxidation and suppressed de novo lipogenesis in the adipose tissue and liver. LA-Y effectively alleviated glucose metabolism disorders by activating the insulin signaling pathway, suppressing gluconeogenesis in the liver and muscle, reducing the concentration of pro-inflammatory cytokines in the serum, and promoting glycolysis and gluconeogenesis in the small intestine. LA-Y supplementation also promoted fat browning via the adiponectin/AMPKα/PGC-1α/UCP1 pathway and enhanced mitochondrial biogenesis in the liver and muscle by activating the adiponectin/AdipoR1/APPL1/AMPKα/PGC-1α pathway, leading to increased energy expenditure. Therefore, LA-Y may be a functional dairy food for preventing and alleviating diet-induced metabolic disorders.


Subject(s)
Insulin Resistance , Probiotics , Mice , Animals , Diet, High-Fat/adverse effects , Adiponectin/metabolism , Yogurt , Obesity/drug therapy , Obesity/etiology , Lipid Metabolism , Insulin/metabolism , Lipids , Mice, Inbred C57BL , Adaptor Proteins, Signal Transducing/metabolism
10.
Nat Commun ; 13(1): 5361, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36097016

ABSTRACT

DNA data storage is a rapidly developing technology with great potential due to its high density, long-term durability, and low maintenance cost. The major technical challenges include various errors, such as strand breaks, rearrangements, and indels that frequently arise during DNA synthesis, amplification, sequencing, and preservation. In this study, a de novo strand assembly algorithm (DBGPS) is developed using de Bruijn graph and greedy path search to meet these challenges. DBGPS shows substantial advantages in handling DNA breaks, rearrangements, and indels. The robustness of DBGPS is demonstrated by accelerated aging, multiple independent data retrievals, deep error-prone PCR, and large-scale simulations. Remarkably, 6.8 MB of data is accurately recovered from a severely corrupted sample that has been treated at 70 °C for 70 days. With DBGPS, we are able to achieve a logical density of 1.30 bits/cycle and a physical density of 295 PB/g.


Subject(s)
High-Throughput Nucleotide Sequencing , Information Storage and Retrieval , Algorithms , DNA/genetics , Sequence Analysis, DNA
11.
Synth Syst Biotechnol ; 7(3): 989-1001, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35782484

ABSTRACT

Bacillomycin D is a cyclic lipopeptide produced by Bacillus amyloliquefaciens fmbJ. At present, no relevant report has described the combinatorial biosynthesis of bacillomycin D. Due to the strong biosynthetic potential of the communication-mediating (COM) domains, its crosstalk between NRPS subunits has been studied to some extent, but the interaction of COM domain between modules is rarely reported. Therefore, in this study, we conducted the combinatorial biosynthesis of bacillomycin D through the deletion of the COM donor and acceptor domains between the modules and elucidated the interaction between the NRPS modules. The results showed that the deletion of the donor domain between modules 2 and 3 did not affect catalysis by upstream modules, but prevented downstream modules from catalysing the extension of the lipopeptide product, ultimately resulting in mutant complexes that could form linear dipeptides with the sequence ß-NH2FA-Asn-Tyr. However, the engineered hybrid bacillomycin D NRPSs lacking the donor domains between modules 3 and 4 and modules 6 and 7 could form multiple assembly lines that produced bacillomycin D and its analogs (linear tripeptides, cyclic hexapeptides and linear hexapeptides). In addition, all the acceptor domain deletion strains failed to produce bacillomycin D, only truncated peptides produced by module interruption (except for the acceptor domain deletion strains between modules 3 and 4, which also produced cyclic hexapeptides). In conclusion, deletion of the inter-module donor domains led to a more flexible hybrid biosynthetic system for the production of diverse peptide products; compared with the inter-subunit donor domain deletion strains that could only produce truncated peptides, the former had a greater biosynthetic capacity. Meanwhile, the acceptor domains between modules were an important part of module-module interactions and efficient communication within bacillomycin D synthetase.

12.
Pharmacol Res ; 182: 106350, 2022 08.
Article in English | MEDLINE | ID: mdl-35843568

ABSTRACT

Hyperuricemia is a critical threat to human health, and conventional medical treatment only aims to treat acute gouty arthritis. Purine diet-mediated chronic hyperuricemia and related syndromes are neglected in clinical therapeutics. In this study, the prevention ability of Lacticaseibacillus rhamnosus Fmb14, screened from Chinese yogurt, was evaluated in chronic purine-induced hyperuricemia (CPH) mice. After 12 weeks of Fmb14 administration, serum uric acid (SUA) in CPH mice decreased by 36.8 %, from 179.1 to 113.2 µmol/L, and the mortality rate decreased from 30 % to 10 %. The prevention role of Fmb14 in CPH was further investigated, and the reduction of uric acid by Fmb14 was attributed to the reduction of XOD (xanthine oxidase) in the liver and URAT1 in the kidney, as well the promotion of ABCG2 in the colon. Fmb14 administration Increased ZO-1 and Occludin expression in the colon and decreased fibrosis degree in the kidney indicated that Fmb14 administration had preventive effects through the gut-kidney axis in CPH. In specific, Fmb14 administration upregulated the diversity of gut microbiota, increased short-chain fatty acids (SCFA) by 35 % in colon materials and alleviated the inflammatory response by reducing biomarkers levels of IL-1ß, IL-18 and TNF-α at 11.6 %, 21.7 % and 26.5 % in serum, compared to CPH group, respectively. Additionally, 16 S rRNA sequencing showed 31.5 % upregulation of Prevotella, 20.5 % and 21.6 % downregulation of Ruminococcus and Suterella at the genus level, which may be a new gut microbial marker in hyperuricemia. In conclusion, Fmb14 ameliorated CPH through the gut-kidney axis, suggesting a new strategy to prevent hyperuricemia.


Subject(s)
Hyperuricemia , Kidney Diseases , Animals , Fibrosis , Humans , Hyperuricemia/chemically induced , Hyperuricemia/drug therapy , Kidney , Kidney Diseases/metabolism , Mice , Uric Acid
13.
Food Sci Nutr ; 10(7): 2455-2469, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35844917

ABSTRACT

Surfactin, produced by Bacillus amyloliquefaciens fmb50, was used to treat insulin-resistant (IR) hepatocyte. It was found that surfactin increased glucose consumption in insulin-resistant HepG2 (IR-HepG2) cells and ameliorated IR by increasing glucose transporter 4 (GLUT4) protein expression and AMP-activated protein kinase (AMPK) mRNA expression, promoting GLUT4 translocation and activating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) in IR-HepG2 cells. Meanwhile, surfactin downregulated protein expression of phosphoenolpyruvate carboxy kinase (PEPCK) and glucose-6-phosphatase (G6Pase), further inhibiting hepatic gluconeogenesis. In addition, surfactin played important roles in eliminating reactive oxygen species (ROS), improving mitochondrial dysfunction, and inhibiting proinflammatory mediators. We observed that surfactin promoted glucose consumption, meanwhile increased translocation and protein expression of GLUT4 in Caco-2 cells. These results confirmed the conclusion in hepatic cells. Furthermore, surfactin supplement decreased body weight, food intake, and fasting blood glucose of type 2 diabetes mellitus (T2DM) mice induced by streptozotocin (STZ)/high-fat diet (HFD). Our data indicated that surfactin ameliorated insulin resistance and lowered blood glucose in intro and in vivo.

14.
Int J Biol Macromol ; 212: 211-219, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35609836

ABSTRACT

With the increasing attention to food preservation and environmental safety, there is great pressing demand to explore novel edible and environment-friendly food packaging films. In the present study, a new kind natural curdlan (CD) film was developed with the addition of bacterial cellulose (BC) and cinnamon essential oil (CEO) at 2% and 10% (w/w) amounts, with regard to improve mechanical properties and investigate potential food applications. Our results showed that the tensile strength, the crystallinity and the thermal stability of the CD/BC blending film were improved, while the water vapor permeability, moisture content and the lightness were reduced. Moreover, the CEO addition to the CD/BC film further increased the barrier properties and also mechanical properties. The results of FTIR and XRD were applied for analyzing the potential interactions of the film matrix. Finally, addition of CEO endowed the blending films with good antibacterial activity and antioxidant capacity, which could effectively inhibit the bacterial growth and the lipid oxidation of chilled chicken during the preservative period. Thus, this work demonstrates that the novel CD/BC/CEO blending film with improved mechanical and barrier properties can be of great potential for developing food packaging material for promising applications.


Subject(s)
Cinnamomum zeylanicum , Oils, Volatile , Bacteria , Cellulose , Food Packaging/methods , Oils, Volatile/pharmacology , Permeability , Tensile Strength , beta-Glucans
15.
Colloids Surf B Biointerfaces ; 215: 112521, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35490540

ABSTRACT

To improve the bioavailability of curcumin, surfactin was used to prepare curcumin-loaded nanoemulsions (Cur-NEs). Moreover, the physicochemical properties, digestive characteristics, as well as inhibition activity to Caco-2 cells of Cur-NEs were measured. Furthermore, the morphological analysis revealed that Cur-NEs with 320 mg/L surfactin appeared spherical nanoparticale (23.23 ± 2.86 nm) and uniform distribution. The encapsulation efficiency of Cur-NEs with 320 mg/L surfactin was 97.25 ± 1.28%. Simulated gastrointestinal digestion results indicated that surfactin elevated the sustained-release characteristics and higher bioaccessibility (40.92 ± 2.84%) of curcumin. Besides, Cur-NEs with 320 mg/L surfactin exhibited excellent stability in different temperature, pH and light irradiation. In addition, the inhibition of Cur-NEs with 320 mg/L surfactin to Caco-2 cells was 71.29%. Biochemical analysis showed that Cur-NEs enhanced the activity of lactate dehydrogenase, superoxide dismutase, catalase and glutathione peroxidase, as well as the reactive oxygen species content. RT-PCR and ELISA results also revealed that Cur-NEs inhibited Caco-2 cells through the activated mitochondria-mediated pathway. This study provided a strategy to encapsulate curcumin in nanoparticles with surfactin for improving bioavailability.


Subject(s)
Curcumin , Nanoparticles , Biological Availability , Caco-2 Cells , Curcumin/chemistry , Digestion , Drug Carriers/chemistry , Humans , Nanoparticles/chemistry , Particle Size
16.
Appl Microbiol Biotechnol ; 106(2): 549-562, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34939137

ABSTRACT

Accumulating evidence suggested that suppression of Propionibacterium acnes-induced inflammation was a promising strategy to alleviate acne vulgaris. This study evaluated the alleviating effect of surfactin-oleogel on P. acnes-induced inflammatory acne vulgaris in mice. Epidermis morphology and histopathological examination showed that surfactin-oleogel effectively ameliorated the P. acnes-induced epidermis swelling and erythema. Surfactin-oleogel reduced the epidermis thickness to 48.52% compared to the model control group. The colony of P. acnes in the epidermis was decreased by 1 log CFU/mL after receiving surfactin-oleogel treatment. Furthermore, surfactin-oleogel attenuated oxidative stress in the epidermis by increasing the activities of superoxide dismutase, catalase, and glutathione peroxidase. In addition, the expression of inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2, pro-inflammatory cytokines (e.g. tumour necrosis factor-α and interleukin-1ß), and nuclear factor kappa-B in the epidermis were reduced after treating with surfactin-oleogel. Moreover, total cholesterol and free fatty acids were decreased, whereas the treatment of surfactin-oleogel increased triglycerides and linoleic acid content. Besides, immunohistochemical assay and real-time PCR analysis indicated that surfactin-oleogel blocked the TLR2-mediated NF-κB signalling pathways in the epidermis. Consequently, our results demonstrated that surfactin-oleogel had antibacterial and anti-inflammation activities to treat P. acnes-induced inflammatory acne vulgaris.Key points• Surfactin-oleogel effectively relieves inflammation and oxidative stress caused by P. acnes.• Surfactin-oleogel effectively reduced the P. acnes colony.• Surfactin-oleogel relieves P. acnes-induced inflammation by inactivated the TLR-mediated NF-κB.


Subject(s)
Acne Vulgaris , Propionibacterium acnes , Acne Vulgaris/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Mice , NF-kappa B , Organic Chemicals
17.
Appl Microbiol Biotechnol ; 105(13): 5643-5655, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34160646

ABSTRACT

Brevibacillins are broad-spectrum cationic antimicrobial lipopeptides produced by Brevibacillus laterosporus fmb70 CGMCC 18426. The antibacterial mode of brevibacillins against Salmonella typhimurium CICC 21493 was investigated by quantum chemistry calculation in this study. The addition of LPS, Mg2+, and Ca2+ partially reduced the antimicrobial activity of brevibacillin and brevibacillin V against S. typhimurium, which indicated that the two cationic lipopeptides could bind to LPS and displaced the divalent cations on the LPS network. Release of LPS from S. typhimurium by brevibacillin and brevibacillin V resulted in destroying the dense LPS network and increasing the permeability of the outer membrane. Quantum chemistry calculation analysis revealed that Lys7 is the most critical amino acid residue to destroy the outer membrane. The total average N-H charge difference of the three protonated amino groups (Orn3-NH3, Lys7-NH3, and Lys10-NH3) determined the ability of brevibacillin V to bind LPS stronger than brevibacillin. Calcein complete leakage from liposomes and release of DiSC3-5 from the cytoplasmic membrane (CM) indicated that brevibacillin and brevibacillin V may destroy the CM. Brevibacillin and brevibacillin V exhibited their antimicrobial activities through membrane damages, where the OM permeability with high concentration of 64-256 µg/mL and membrane damage of CM with a low concentration of 4 µg/mL. Our finding might be helpful to understand the broad-spectrum antimicrobial mechanism of cationic lipopeptide and to design the novel antimicrobial peptide. KEY POINTS: • Brevibacillin V had stronger affinity for LPS than brevibacillin. • The N-H charge difference was the key of the difference in the affinity to LPS. • Brevibacillins inhibited Salmonella by displacing the divalent cations on the LPS.


Subject(s)
Anti-Infective Agents , Lipopeptides , Anti-Bacterial Agents/pharmacology , Brevibacillus , Lipopeptides/pharmacology , Lipopolysaccharides , Salmonella typhimurium
18.
Appl Microbiol Biotechnol ; 105(7): 2713-2723, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33710357

ABSTRACT

Plantaricin EF, a kind of natural antibacterial substance, has shown inhibitory effect on most pathogen and spoilage microorganisms, which possessed great potential in food preservation. However, the lower production of plantaricin EF has limited its large-scale production and application. In this study, the effect of maltose on plantaricin EF production and its regulation mechanism in Lactobacillus plantarum 163 were investigated. Maltose significantly improved the biomass and plantaricin EF production, which increased by 3.35 and 3.99 times comparing to the control without maltose, respectively. The maximum production of plantaricin E and F in fed-batch fermentation were 10.55 mg/L and 22.94 mg/L, respectively. Besides, qPCR results showed that maltose remarkably improved transcription of plnA, plnB, plnD, plnE, plnF, plnG1 and plnH, and heighten transcription of lamR, lamK, hpk6 and rrp6. These results provided an effective method to enhance plantaricin EF production and revealed a possible regulatory mechanism from transcriptome results that hpk6, rrp6, lamK and lamR were relative to plantaricin EF production. Genes, hpk6 and rrp6, promote transcription of plnG1, whereas lamK and lamR enhance transcription of plnA, plnB and plnD, which increased plantaricin EF production. KEYPOINTS: • Maltose was proved to be effective in promoting the biosynthesis of plantaricin EF. • Maltose promoted the transcription of biosynthesis and secretion genes of plantaricin EF. • Up-regulation of genes lamR, lamK, hpk6 and rrp6 heightened the plantaricin EF production.


Subject(s)
Bacteriocins , Lactobacillus plantarum , Bacteriocins/genetics , Bacteriocins/metabolism , Fermentation , Lactobacillus plantarum/genetics , Lactobacillus plantarum/metabolism , Maltose
19.
J Agric Food Chem ; 69(12): 3751-3760, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33565867

ABSTRACT

Four novel chimeric lysins (P361, P362, P371, and P372), which were the fusion of Salmonella phage lysins and novel antimicrobial peptide LeuA-P, were obtained using bioinformatics analysis and in silico design. The recombinant chimeric lysins were expressed in E. coli BL21(DE3) strain and showed highly specific inhibition against Salmonella. The minimal inhibitory concentrations (MICs) of P362 and P372 to S. typhi CMCC 50071 were 8 and 16 µg/mL, respectively. Both 1 × MIC P362 and P372 could increase the outer membrane permeability and cleave the cell wall peptidoglycan, causing the leakage of intracellular nucleic acids and proteins and ultimately killing Salmonella efficiently without drug resistance. The combination of P362, P372, and potassium sorbate reduced more than 3 log CFU/g counts of microorganisms in contaminated chilled chicken and extended the shelf life by 7 days. The strategy of antimicrobial peptide (AMP)-lysin chimera inspired the inability of phage lysin to specifically inhibit Gram-negative bacteria with dense outer membranes in vitro.


Subject(s)
Escherichia coli , Gram-Negative Bacteria , Anti-Bacterial Agents/pharmacology , Computer Simulation , Computer-Aided Design , Escherichia coli/genetics , Salmonella/genetics
20.
Toxins (Basel) ; 14(1)2021 12 25.
Article in English | MEDLINE | ID: mdl-35050993

ABSTRACT

Deoxynivalenol (DON) is a secondary metabolite produced by several Fusarium species that is hazardous to humans and animals after entering food chains. In this study, by adding cofactors, the Devosia strain A6-243 is identified as the DON-transforming bacteria from a bacterial consortium with the ability to biotransform DON of Pseudomonas sp. B6-24 and Devosia strain A6-243, and its effect on the biotransformation process of DON is studied. The Devosia strain A6-243 completely biotransformed 100 µg/mL of DON with the assistance of the exogenous addition of PQQ (pyrroloquinoline quinone) within 48 h and produced non-toxic 3-epi-DON (3-epi-deoxynivalenol), while Pseudomonas sp. B6-24 was not able to biotransform DON, but it had the ability to generate PQQ. Moreover, the Devosia strain A6-243 not only degraded DON, but also exhibited the ability to degrade 3-keto-DON (3-keto-deoxynivalenol) with the same product 3-epi-DON, indicating that DON epimerization by the Devosia strain A6-243 is a two-step enzymatic reaction. The most suitable conditions for the biodegradation process of the Devosia strain A6-243 were a temperature of 16-37 °C and pH 7.0-10, with 15-30 µM PQQ. In addition, the Devosia strain A6-243 was found to completely remove DON (6.7 µg/g) from DON-contaminated wheat. The results presented a reference for screening microorganisms with the ability of biotransform DON and laid a foundation for the development of enzymes for the detoxification of mycotoxins in grain and its products.


Subject(s)
Fusarium/chemistry , Mycotoxins/chemistry , PQQ Cofactor/chemistry , Trichothecenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...