Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
2.
Int J Mol Med ; 54(2)2024 08.
Article in English | MEDLINE | ID: mdl-38963023

ABSTRACT

Metformin has been the go­to medical treatment for addressing type 2 diabetes mellitus (T2DM) as a frontline oral antidiabetic. Obesity, cancer and bone deterioration are linked to T2DM, which is considered a metabolic illness. Numerous diseases associated with T2DM, such as tumours, cardiovascular disease and bone deterioration, may be treated with metformin. Intervertebral disc degeneration (IVDD) is distinguished by degeneration of the spinal disc, accompanied by the gradual depletion of proteoglycans and water in the nucleus pulposus (NP) of the IVD, resulting in lower back pain. The therapeutic effect of metformin on IVDD has also attracted much attention. By stimulating AMP­activated kinase, metformin could enhance autophagy and suppress cell senescence, apoptosis and inflammation, thus effectively delaying IVDD. The present review aimed to systematically explain the development of IVDD and mechanism of metformin in the treatment and prevention of IVDD to provide a reference for the clinical application of metformin as adjuvant therapy in the treatment of IVDD.


Subject(s)
Intervertebral Disc Degeneration , Metformin , Metformin/therapeutic use , Metformin/pharmacology , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/prevention & control , Intervertebral Disc Degeneration/metabolism , Humans , Animals , Disease Progression , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Autophagy/drug effects
3.
Inorg Chem ; 63(28): 12764-12773, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38950312

ABSTRACT

Cobalt (Co)-based materials have been widely investigated as hopeful noble-metal-free alternatives for the oxygen evolution reaction (OER) in alkaline electrolytes, which is crucial for generating hydrogen by water electrolysis. Herein, cobalt-based telluride particles with good electronic conductivity as anodic electrocatalysts were prepared under vacuum by the solid-state strategy, which display remarkable activities toward the OER. Nickel (Ni) and iron (Fe) codoped cobalt telluride (NiFe-CoTe) exhibits an overpotential of 321 mV to achieve a current density of 10 mA cm-2 and a Tafel slope of 51.8 mV dec-1, outperforming the performances of CoTe, CoTe2, and IrO2. According to the DFT calculation, the adsorbed hydroxyl-assisted adsorbate evolution mechanism was proposed for the OER process of NiFe-CoTe, which reveals the synergetic effect toward OER induced by codoping of the Ni and Fe atoms. This work proposes a rational strategy to prepare cobalt-based tellurides as efficient OER catalysts in alkaline electrolytes, providing a new strategy to prepare and regulate metal-based tellurides for catalysis and beyond.

4.
Sci Total Environ ; 946: 174330, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38945245

ABSTRACT

Ecological succession and restoration rapidly promote multiple dimensions of ecosystem functions and mitigate global climate change. However, the factors governing the limited capacity to sequester soil organic carbon (SOC) in old forests are poorly understood. Ecological theory predicts that plants and microorganisms jointly evolve into a more mutualistic relationship to accelerate detritus decomposition and nutrient regeneration in old than young forests, likely explaining the changes in C sinks across forest succession or rewilding. To test this hypothesis, we conducted a field experiment of root-mycorrhizal exclusion in successional subtropical forests to investigate plant-decomposer interactions and their effects on SOC sequestration. Our results showed that SOC accrual rate at the 0-10 cm soil layer was 1.26 mg g-1 yr-1 in early-successional arbuscular mycorrhizal (AM) forests, which was higher than that in the late-successional ectomycorrhizal (EcM) forests with non-significant change. A transition from early-successional AM to late-successional EcM forests increase fungal diversity, especially EcM fungi. In the late-successional forests, the presence of ectomycorrhizal hyphae promotes SOC decomposition and nutrient cycle by increasing soil nitrogen and phosphorus degrading enzyme activity as well as saprotrophic microbial richness. Across early- to late-successional forests, mycorrhizal priming effects on SOC decomposition explain a slow-down in the capacity of older forests to sequester soil C. Our findings suggest that a transition from AM to EcM forests supporting greater C decomposition can halt the capacity of forests to provide nature-based global climate change solutions.


Subject(s)
Carbon Sequestration , Forests , Mycorrhizae , Soil Microbiology , Soil , Mycorrhizae/physiology , Soil/chemistry , Carbon/analysis , Climate Change , Conservation of Natural Resources
5.
Glob Chang Biol ; 30(6): e17338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822535

ABSTRACT

Nitrogen (N) immobilization (Nim, including microbial N assimilation) and plant N uptake (PNU) are the two most important pathways of N retention in soils. The ratio of Nim to PNU (hereafter Nim:PNU ratio) generally reflects the degree of N limitation for plant growth in terrestrial ecosystems. However, the key factors driving the pattern of Nim:PNU ratio across global ecosystems remain unclear. Here, using a global data set of 1018 observations from 184 studies, we examined the relative importance of mycorrhizal associations, climate, plant, and soil properties on the Nim:PNU ratio across terrestrial ecosystems. Our results show that mycorrhizal fungi type (arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi) in combination with soil inorganic N mainly explain the global variation in the Nim:PNU ratio in terrestrial ecosystems. In AM fungi-associated ecosystems, the relationship between Nim and PNU displays a weaker negative correlation (r = -.06, p < .001), whereas there is a stronger positive correlation (r = .25, p < .001) in EM fungi-associated ecosystems. Our meta-analysis thus suggests that the AM-associated plants display a weak interaction with soil microorganisms for N absorption, while EM-associated plants cooperate with soil microorganisms. Furthermore, we find that the Nim:PNU ratio for both AM- and EM-associated ecosystems gradually converge around a stable value (13.8 ± 0.5 for AM- and 12.1 ± 1.2 for EM-associated ecosystems) under high soil inorganic N conditions. Our findings highlight the dependence of plant-microbial interaction for N absorption on both plant mycorrhizal association and soil inorganic N, with the stable convergence of the Nim:PNU ratio under high soil N conditions.


Subject(s)
Mycorrhizae , Nitrogen , Soil Microbiology , Soil , Mycorrhizae/physiology , Mycorrhizae/metabolism , Nitrogen/metabolism , Soil/chemistry , Plants/metabolism , Plants/microbiology , Ecosystem
6.
Int J Clin Pharm ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642249

ABSTRACT

BACKGROUND: Colorectal cancer is a significant health concern worldwide, with metastatic CRC (mCRC) presenting a particularly challenging prognosis. The FRESCO-2 trial highlighted the potential of fruquintinib in heavily pretreated mCRC patients. AIM: Given the recent changes in drug pricing in China and the evolving mCRC treatments, this study aimed to evaluate the cost-effectiveness of fruquintinib in the context of current Chinese healthcare standards. METHOD: This study utilized data from the FRESCO-2 trial, incorporating a partitioned-survival model to simulate three health states: Progression-Free Survival, Progressive Disease, and death. Costs and utility values were derived from published literature and the FRESCO-2 trial. Sensitivity analyses were conducted to assess the robustness of the base-case result and to understand the impact of various parameters on the ICER. RESULTS: The base-case analysis revealed a total cost of $11,089.05 for the fruquintinib group and $5,374.48 for the placebo group. The overall QALYs were higher in the fruquintinib group (0.61 QALYs) compared to the placebo group (0.43 QALYs). The ICER was calculated to be $31,747.67 per QALY. Sensitivity analyses identified the utility of progression-free survival, the cost of fruquintinib, and the costs of best supportive care as significant determinants of ICER. CONCLUSION: Fruquintinib emerges as a promising therapeutic option for refractory mCRC. However, its cost-effectiveness depends on selected willingness-to-pay (WTP) threshold. While the drug's ICER surpasses the WTP based on China's 2022 GDP per capita, it remains below the threshold set at three times the national GDP.

7.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 122-127, 2024 Jan 28.
Article in English, Chinese | MEDLINE | ID: mdl-38615173

ABSTRACT

DNA methylation, a crucial biochemical process within the human body, fundamentally alters gene expression without modifying the DNA sequence, resulting in stable changes. The changes in DNA methylation are closely related to numerous biological processes including cellular proliferation and differentiation, embryonic development, and the occurrence of immune diseases and tumor. Specifically, abnormal DNA methylation plays a crucial role in the formation, progression, and prognosis of chronic myeloid leukemia (CML). Moreover, DNA methylation offers substantial potential for diagnosing and treating CML. Accordingly, understanding the precise mechanism of DNA methylation, particularly abnormal changes in the methylation of specific genes in CML, can potentially promote the development of novel targeted therapeutic strategies. Such strategies could transform into clinical practice, effectively aiding diagnosis and treatment of CML patients.


Subject(s)
DNA Methylation , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Female , Pregnancy , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Cell Proliferation , Hyperplasia
8.
Aging Cell ; 23(5): e14124, 2024 05.
Article in English | MEDLINE | ID: mdl-38380563

ABSTRACT

DJ-1, also known as Parkinson's disease protein 7 (Park7), is a multifunctional protein that regulates oxidative stress and mitochondrial function. Dysfunction of DJ-1 is implicated in the pathogenesis of Parkinson's disease (PD). Hyperhomocysteinemia is associated with an increased risk of PD. Here we show that homocysteine thiolactone (HTL), a reactive thioester of homocysteine (Hcy), covalently modifies DJ-1 on the lysine 182 (K182) residue in an age-dependent manner. The N-homocysteinylation (N-hcy) of DJ-1 abolishes its neuroprotective effect against oxidative stress and mitochondrial dysfunction, exacerbating cell toxicity. Blocking the N-hcy of DJ-1 restores its protective effect. These results indicate that the N-hcy of DJ-1 abolishes its neuroprotective effect and promotes the progression of PD. Inhibiting the N-hcy of DJ-1 may exert neuroprotective effect against PD.


Subject(s)
Homocysteine , Parkinson Disease , Protein Deglycase DJ-1 , Protein Deglycase DJ-1/metabolism , Protein Deglycase DJ-1/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Homocysteine/metabolism , Homocysteine/analogs & derivatives , Humans , Animals , Oxidative Stress/drug effects , Mice , Mitochondria/metabolism
9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 287-291, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38387936

ABSTRACT

Pyroptosis is a programmed death mediated by activated caspase and Gasdermin family proteins, characterized by cell swelling, cytosolysis and release of inflammatory factors. Leukemia is a malignant disease characterized by abnormal differentiation and proliferation of hematopoietic stem cells, thus seriously threating human health. In recent years, it has been found that the transformation, proliferation, metastasis and treatment response of leukemia cells are closely related to pyrodeath. Pyroptosis provides a new perspective for the study of leukemia. This paper reviews the types and molecular mechanisms of pyroptosis, the role of pyroptosis in the occurrence and development of leukemia and the treatment of leukemia, so as to provide some references for further study of the relationship between pyroptosis and leukemia, in order to provide a new strategy for the treatment of leukemia.


Subject(s)
Leukemia , Pyroptosis , Humans , Pyroptosis/physiology , Neoplasm Proteins/metabolism , Caspases , Leukemia/therapy
10.
New Phytol ; 241(5): 2059-2074, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38197218

ABSTRACT

Thermo-sensitive genic male sterile (TGMS) lines are the core of two-line hybrid rice (Oryza sativa). However, elevated or unstable critical sterility-inducing temperatures (CSITs) of TGMS lines are bottlenecks that restrict the development of two-line hybrid rice. However, the genes and molecular mechanisms controlling CSIT remain unknown. Here, we report the CRITICAL STERILITY-INDUCING TEMPERATURE 2 (CSIT2) that encodes a really interesting new gene (RING) type E3 ligase, controlling the CSIT of thermo-sensitive male sterility 5 (tms5)-based TGMS lines through ribosome-associated protein quality control (RQC). CSIT2 binds to the large and small ribosomal subunits and ubiquitinates 80S ribosomes for dissociation, and may also ubiquitinate misfolded proteins for degradation. Mutation of CSIT2 inhibits the possible damage to ubiquitin system and protein translation, which allows more proteins such as catalases to accumulate for anther development and inhibits abnormal accumulation of reactive oxygen species (ROS) and premature programmed cell death (PCD) in anthers, partly rescuing male sterility and raised the CSIT of tms5-based TGMS lines. These findings reveal a mechanism controlling CSIT and provide a strategy for solving the elevated or unstable CSITs of tms5-based TGMS lines in two-line hybrid rice.


Subject(s)
Infertility, Male , Oryza , Male , Humans , Temperature , Oryza/genetics , Ubiquitin , Ubiquitin-Protein Ligases/genetics , Plant Infertility/genetics
11.
MedComm (2020) ; 5(1): e423, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38188603

ABSTRACT

Duchenne muscular dystrophy (DMD) is an incurable X-linked recessive genetic disease caused by mutations in the dystrophin gene. Many researchers aim to restore truncated dystrophin via viral vectors. However, the low packaging capacity and immunogenicity of vectors have hampered their clinical application. Herein, we constructed four lentiviral vectors with truncated and sequence-optimized dystrophin genes driven by muscle-specific promoters. The four lentiviral vectors stably expressed mini-dystrophin in C2C12 muscle cells in vitro. To estimate the treatment effect in vivo, we transferred the lentiviral vectors into neonatal C57BL/10ScSn-Dmdmdx mice through local injection. The levels of modified dystrophin expression increased, and their distribution was also restored in treated mice. At the same time, they exhibited the restoration of pull force and a decrease in the number of mononuclear cells. The remissions lasted 3-6 months in vivo. Moreover, no integration sites of vectors were distributed into the oncogenes. In summary, this study preliminarily demonstrated the feasibility and safety of lentiviral vectors with mini-dystrophin for DMD gene therapy and provided a new strategy to restore truncated dystrophin.

12.
CNS Neurosci Ther ; 30(2): e14420, 2024 02.
Article in English | MEDLINE | ID: mdl-37641911

ABSTRACT

Homocysteine (Hcy) is an important metabolite in methionine metabolism. When the metabolic pathway of homocysteine is abnormal, it will accumulate in the body and eventually lead to hyperhomocysteinemia. In recent years, many studies have found that hyperhomocysteinemia is related to the occurrence and development of Parkinson's disease. This study reviews the roles of homocysteine in the pathogenesis of Parkinson's disease and illustrates the harmful effects of hyperhomocysteinemia on Parkinson's disease.


Subject(s)
Hyperhomocysteinemia , Parkinson Disease , Humans , Parkinson Disease/metabolism , Levodopa , Hyperhomocysteinemia/complications , Homocysteine
13.
Mol Neurobiol ; 61(1): 15-27, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37566176

ABSTRACT

Parkinsonism is a clinical syndrome that is caused by Parkinson's disease (PD) and other neurodegenerative diseases. Here, we report a patient who exhibited progressive parkinsonism, epilepsy, and cognitive impairment and was diagnosed with adult-onset neuronal ceroid lipofuscinoses (ANCLs). The patient carries a mutation (p.Leu116 del) in the DNAJC5 gene that encodes cysteine string protein (CSPα). Since the patient shows typical parkinsonism and loss of dopamine transporter in the striatum, we investigated the effect of wild-type and L116del mutant CSPα on the aggregation of α-synuclein (α-syn) and neurotoxicity in vitro. Overexpression of wild-type CSPα attenuated the phosphorylation, ubiquitination, and aggregation of α-syn induced by α-syn fibrils. Moreover, wild-type CSPα inhibits oxidative stress and cell apoptosis and rescues inefficient SNARE complex formation induced by α-syn fibrils in SH-SY5Y cells. However, these protective effects of CSPα were abolished by the L116del mutation. Collectively, these results indicate that L116 deletion in CSPα promotes α-syn pathology and neurotoxicity. Boosting CSPα may be therapeutically useful for treating synucleinopathies.


Subject(s)
Chromans , Neuroblastoma , Parkinson Disease , Adult , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Mutation , Parkinson Disease/genetics
14.
Eur Radiol ; 34(4): 2323-2333, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37819276

ABSTRACT

OBJECTIVES: This study aimed to propose a deep learning (DL)-based framework for identifying the composition of thyroid nodules and assessing their malignancy risk. METHODS: We conducted a retrospective multicenter study using ultrasound images from four hospitals. Convolutional neural network (CNN) models were constructed to classify ultrasound images of thyroid nodules into solid and non-solid, as well as benign and malignant. A total of 11,201 images of 6784 nodules were used for training, validation, and testing. The area under the receiver-operating characteristic curve (AUC) was employed as the primary evaluation index. RESULTS: The models had AUCs higher than 0.91 in the benign and malignant grading of solid thyroid nodules, with the Inception-ResNet AUC being the highest at 0.94. In the test set, the best algorithm for identifying benign and malignant thyroid nodules had a sensitivity of 0.88, and a specificity of 0.86. In the human vs. DL test set, the best algorithm had a sensitivity of 0.93, and a specificity of 0.86. The Inception-ResNet model performed better than the senior physicians (p < 0.001). The sensitivity and specificity of the optimal model based on the external test set were 0.90 and 0.75, respectively. CONCLUSIONS: This research demonstrates that CNNs can assist thyroid nodule diagnosis and reduce the rate of unnecessary fine-needle aspiration (FNA). CLINICAL RELEVANCE STATEMENT: High-resolution ultrasound has led to increased detection of thyroid nodules. This results in unnecessary fine-needle aspiration and anxiety for patients whose nodules are benign. Deep learning can solve these problems to some extent. KEY POINTS: • Thyroid solid nodules have a high probability of malignancy. • Our models can improve the differentiation between benign and malignant solid thyroid nodules. • The differential performance of one model was superior to that of senior radiologists. Applying this could reduce the rate of unnecessary fine-needle aspiration of solid thyroid nodules.


Subject(s)
Deep Learning , Thyroid Neoplasms , Thyroid Nodule , Humans , Thyroid Nodule/diagnostic imaging , Thyroid Nodule/pathology , Diagnosis, Differential , Sensitivity and Specificity , Ultrasonography/methods , Retrospective Studies , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/pathology
15.
J Transl Med ; 21(1): 870, 2023 11 30.
Article in English | MEDLINE | ID: mdl-38037028

ABSTRACT

BACKGROUND: To scrutinize the relationship between vitamin B2 consumption and cognitive function based on the NHANES database. METHODS: This cross-sectional study included eligible older adults from the NHANES 2011-2014. Vitamin B2 intake was determined from dietary interview data for two 24-h periods. Cognitive function was evaluated through the Consortium to Establish a Registry for Alzheimer's Disease (CERAD), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST). The regression analyses were used to evaluate the association of vitamin B2 intake with cognitive performance. Stratified analyses based on gender, race, and body mass index (BMI) were conducted. RESULTS: Higher vitamin B2 intake was correlated with higher scores on each test. As compared to the lowest quartile, the highest quartile of vitamin B2 intake was related to a 45.1-fold increase (P = 0.004) on the DSST test sores. Moreover, those who were males, non-Hispanic whites, or had a BMI of 18.5 to 30 kg/m2 had a stronger relationship between total vitamin B2 consumption and cognitive function. CONCLUSION: It's possible that older persons who consume more vitamin B2 have enhanced performance in some areas of cognitive function. To determine the causal link between vitamin B2 consumption and cognitive performance, further long-term research is required.


Subject(s)
Cognition , Nutritional Status , Male , Humans , Female , Aged , Aged, 80 and over , Cross-Sectional Studies , Nutrition Surveys , Riboflavin
16.
Genes (Basel) ; 14(12)2023 11 23.
Article in English | MEDLINE | ID: mdl-38136937

ABSTRACT

Endogenous reference genes play a crucial role in the qualitative and quantitative PCR detection of genetically modified crops. Currently, there are no systematic studies on the banana endogenous reference gene. In this study, the MaSPS1 gene was identified as a candidate gene through bioinformatics analysis. The conservation of this gene in different genotypes of banana was tested using PCR, and its specificity in various crops and fruits was also examined. Southern blot analysis showed that there is only one copy of MaSPS1 in banana. The limit of detection (LOD) test showed that the LOD of the conventional PCR method is approximately 20 copies. The real-time fluorescence quantitative PCR (qPCR) method also exhibited high specificity, with a LOD of approximately 10 copies. The standard curve of the qPCR method met the quantitative requirements, with a limit of quantification (LOQ) of 1.14 × 10-2 ng-about 20 copies. Also, the qPCR method demonstrated good repeatability and stability. Hence, the above results indicate that the detection method established in this study has strong specificity, a low detection limit, and good stability. It provides a reliable qualitative and quantitative detection system for banana.


Subject(s)
Musa , Musa/genetics , Plants, Genetically Modified/genetics , Crops, Agricultural/genetics , Real-Time Polymerase Chain Reaction/methods
17.
Sci Adv ; 9(44): eadj1092, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37910610

ABSTRACT

Parkinson's disease (PD) is characterized by the pathologic aggregation and prion-like propagation of α-synuclein (α-syn). Emerging evidence shows that fungal infections increase the incidence of PD. However, the molecular mechanisms by which fungi promote the onset of PD are poorly understood. Here, we show that nasal infection with Saccharomyces cerevisiae (S. cerevisiae) in α-syn A53T transgenic mice accelerates the aggregation of α-syn. Furthermore, we found that Sup35, a prion protein from S. cerevisiae, is the key factor initiating α-syn pathology induced by S. cerevisiae. Sup35 interacts with α-syn and accelerates its aggregation in vitro. Notably, injection of Sup35 fibrils into the striatum of wild-type mice led to α-syn pathology and PD-like motor impairment. The Sup35-seeded α-syn fibrils showed enhanced seeding activity and neurotoxicity compared with pure α-syn fibrils in vitro and in vivo. Together, these observations indicate that the yeast prion protein Sup35 initiates α-syn pathology in PD.


Subject(s)
Parkinson Disease , Saccharomyces cerevisiae , alpha-Synuclein , Animals , Mice , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Mice, Transgenic , Parkinson Disease/metabolism , Prion Proteins/metabolism , Prions/metabolism , Saccharomyces cerevisiae/metabolism
18.
Nat Commun ; 14(1): 6670, 2023 10 21.
Article in English | MEDLINE | ID: mdl-37865646

ABSTRACT

Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane protein that is predominantly expressed by microglia in the brain. The proteolytic shedding of TREM2 results in the release of soluble TREM2 (sTREM2), which is increased in the cerebrospinal fluid of patients with Alzheimer's disease (AD). It remains unknown whether sTREM2 regulates the pathogenesis of AD. Here we identified transgelin-2 (TG2) expressed on neurons as the receptor for sTREM2. The microglia-derived sTREM2 binds to TG2, induces RhoA phosphorylation at S188, and deactivates the RhoA-ROCK-GSK3ß pathway, ameliorating tau phosphorylation. The sTREM2 (77-89) fragment, which is the minimal active sequence of sTREM2 to activate TG2, mimics the inhibitory effect of sTREM2 on tau phosphorylation. Overexpression of sTREM2 or administration of the active peptide rescues tau pathology and behavioral defects in the tau P301S transgenic mice. Together, these findings demonstrate that the sTREM2-TG2 interaction mediates the cross-talk between microglia and neurons. sTREM2 and its active peptide may be a potential therapeutic intervention for tauopathies including AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Humans , Alzheimer Disease/metabolism , Phosphorylation , Mice, Transgenic , Peptides/metabolism , Cognition , tau Proteins/metabolism , Biomarkers/metabolism , Amyloid beta-Peptides/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
19.
Mol Plant ; 16(10): 1695-1709, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37743625

ABSTRACT

Two-line hybrid breeding can fully utilize heterosis in crops. In thermo-sensitive genic male sterile (TGMS) lines, low critical sterility-inducing temperature (CSIT) is vital to safeguard the production of two-line hybrid seeds in rice (Oryza sativa), but the molecular mechanism determining CSIT is unclear. Here, we report the cloning of CSIT1, which encodes an E3 ubiquitin ligase, and show that CSIT1 modulates the CSIT of thermo-sensitive genic male sterility 5 (tms5)-based TGMS lines through ribosome-associated quality control (RQC). Biochemical assays demonstrated that CSIT1 binds to the 80S ribosomes and ubiquitinates abnormal nascent polypeptides for degradation in the RQC process. Loss of CSIT1 function inhibits the possible damage of tms5 to the ubiquitination system and protein translation, resulting in enhanced accumulation of anther-related proteins such as catalase to suppress abnormal accumulation of reactive oxygen species and premature programmed cell death in the tapetum, thereby leading to a much higher CSIT in the tms5-based TGMS lines. Taken together, our findings reveal a regulatory mechanism of CSIT, providing new insights into RQC and potential targets for future two-line hybrid breeding.


Subject(s)
Infertility , Oryza , Temperature , Oryza/genetics , Ubiquitin-Protein Ligases/genetics , Plant Breeding , Ribosomes , Plant Infertility/genetics
20.
Mov Disord ; 38(11): 2005-2018, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37593929

ABSTRACT

BACKGROUND: The accumulation and aggregation of α-synuclein (α-Syn) are characteristic of Parkinson's disease (PD). Epidemiological evidence indicates that hyperlipidemia is associated with an increased risk of PD. The levels of 27-hydroxycholesterol (27-OHC), a cholesterol oxidation derivative, are increased in the brain and cerebrospinal fluid of patients with PD. However, whether 27-OHC plays a role in α-Syn aggregation and propagation remains elusive. OBJECTIVE: The aim of this study was to determine whether 27-OHC regulates α-Syn aggregation and propagation. METHODS: Purified recombinant α-Syn, neuronal cultures, and α-Syn fibril-injected mouse model of PD were treated with 27-OHC. In addition, CYP27A1 knockout mice were used to investigate the effect of lowering 27-OHC on α-Syn pathology in vivo. RESULTS: 27-OHC accelerates the aggregation of α-Syn and enhances the seeding activity of α-Syn fibrils. Furthermore, the 27-OHC-modified α-Syn fibrils localize to the mitochondria and induce mitochondrial dysfunction and neurotoxicity. Injection of 27-OHC-modified α-Syn fibrils induces enhanced spread of α-Syn pathology and dopaminergic neurodegeneration compared with pure α-Syn fibrils. Similarly, subcutaneous administration of 27-OHC facilitates the seeding of α-Syn pathology. Genetic deletion of cytochrome P450 27A1 (CYP27A1), the enzyme that converts cholesterol to 27-OHC, ameliorates the spread of pathologic α-Syn, degeneration of the nigrostriatal dopaminergic pathway, and motor impairments. These results indicate that the cholesterol metabolite 27-OHC plays an important role in the pathogenesis of PD. CONCLUSIONS: 27-OHC promotes the aggregation and spread of α-Syn. Strategies aimed at inhibiting the CYP27A1-27-OHC axis may hold promise as a disease-modifying therapy to halt the progression of α-Syn pathology in PD. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Mice , Animals , Parkinson Disease/genetics , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Hydroxycholesterols/pharmacology , Cholesterol
SELECTION OF CITATIONS
SEARCH DETAIL